
1.はじめに

Delphi/400の業務アプリケーションにおいては、Excelの

ブックを出力または取込を行う機能を組み込むことが多い

ことと思う。主な方法としては、ExcelのOLE機能を使用した

ものがあり、Delphi/400のプログラムからExcelを起動して

操作する。ただし、実行端末にExcelが導入されている必要

がある。

サードパーティ製品でもExcelを扱うものはいくつか存在す

るが、Excelが導入されていない端末で動作が可能なものは

少ない。

本稿ではExcel4Delphiというライブラリを使用して、Excel

導入不要でXLSX形式（古いXLS形式は非対応）のブックの

読み書きを行う手順を紹介する。

002 MIGARO Technical Report

本稿の執筆にあたってはDelphi/400 11 Alexandria

（Delphi 11.3）を使用しており、Excel4Delphiライブラリに

ついての情報は2024年9月時点のものとなっている。

また今回使用するExcel4Delphiライブラリではファイル圧

縮・解凍に「zlib」を使用しており、そのライセンス条項は

「LICENSE.TXT」に記載されているため確認が必要である。

Excel4Delphi
ライブラリを活用したExcel操作術

Delphi/400

株式会社ミガロ.
プロダクト事業部 技術支援課
佐田　雄一

略　歴

生年月日：1985年12月6日
最終学歴：2009年　甲南大学　経営学部卒業
入社年月：2009年04月　株式会社ミガロ．入社
社内経歴：
2009年04月　システム事業部配属
2019年04月　RAD事業部（現プロダクト事業部）配属

現在の仕事内容：

Delphi/400を利用したシステム開発や保守作業の経
験を経て、現在はDelphi/400のサポート業務を担当
している。

1. はじめに
2. Excel4Delphiの概要と導入手順
3. Excel4Delphiの基本的な使い方
　3-1. Excel4Delphiを使ったブックの読み込み
　3-2. 読み込んだブックの内容をワークに更新
　3-3. ワークから読み込んだ内容をXLSXブックに更新
4. IntraWebでのExcel4Delphi活用
5. まとめ

2. Excel4Delphiの概要と導入手順

今回使用するExcel4Delphiは、rareMaxim氏によって開

発されたExcel入出力クラス集である。

Excel 2007以降のブック（XLSX・XLSMなど）は内部的に

はXMLの集合体になっており、Excel4Delphiを使うとそ

の読み書きをロジック内で行うことができる。

Excel4Delphiは厳密にはExcelブックを出力または取込

するというよりはXMLの集合体を読み込み・生成するもの

で、OLE以外のExcelブックの出力または取込を行う機能

の実装手段として利用することができる。（そのため、XML

ではなくバイナリ形式のXLSブックには対応していない。）

ここからは導入手順について説明していく。

まず、GitHubのウェブサイト内にある

https://github.com/rareMaxim/Excel4Delphi

にアクセスすると、ファイル一覧、英語の概要やサンプルロ

ジックが記載されたページが表示される【図1】。内容や先

述のライセンス条項を確認したあと、緑の「<> Code」メニ

ューから『Download ZIP』ボタンを押すと、この一覧に

あるExcel4Delphi関連ファイルがZIP形式で一括ダウン

ロードされる。

取得したZIPファイルを任意のフォルダに解凍したら、各

プロジェクトをコンパイルする際に必要になるため

「Excel4Delphi-master」フォルダ内にある「source」とい

うフォルダをDelphiのライブラリパスに追加しておく。ラ

イブラリパスにフォルダを追加するには、IDE（統合開発環

境）の「ツール」メニューの「オプション」を開き、【図2】の項

目にフォルダを追加する。Delphi 11では10.2以前とオプ

ション画面の配置が異なっているため、ご利用のバージョ

ンの画面を参照頂きたい。

また「 p a c k a g e s 」というフォルダやその中に

「Excel4DelphiLib.dpk」というパッケージが存在する

が、Excel4Delphiではカスタムコンポーネントを使用して

いないためインストールしなくても支障はない。

MIGARO Technical Report 003

図 1 Excel4DelphiのダウンロードExcel4Delphiのダウンロード

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

Excel4Delphiの準備が完了したら、まずは「Demo」フォル

ダにあるプロジェクト「d1.dpr」を開いて実行してみよう。プ

ロジェクトをコンパイルして生成される「d1.exe」は画面を

持たないため起動すると処理のみを行ってすぐに終了する

が、終了後に同じフォルダ内に「file.xlsx」というブックが出

力されている【図3】。このブックを開いてみると、A1～B3セ

ルが結合され、「Hello」という文字がセットされていること

が確認できる。この出力ロジックは「d1.dpr」内に記載されて

おり、ソースを表示するとほんの十数行でこれだけのExcel

出力ロジックが実装されているのを確認できるだろう

【図4】。

図 2 ライブラリパスの設定ライブラリパスの設定

004 MIGARO Technical Report

図 3 デモプログラムで出力されるXLSXブックデモプログラムで出力されるXLSXブック

3. Excel4Delphiの基本的な使い方

3-1. Excel4Delphiを使ったブックの読み込み

本稿で紹介するExcel4Delphiは海外のライブラリ

であるため、日本語環境で問題なく使用できるか検

証してみた。その結果、基本的にはそのまま使用で

きそうではあるが、いくつか工夫する必要があった

ため、そのポイントもあわせて紹介する。

本章ではExcel4Delphiを使って既存のXLSX形式

のブックを読み込み、対象のセルにある値を読み込

んでIBM iのワークファイルに更新するサンプルプ

ログラムを作成していく。

今回使用するブックは例として、【図5】のようなフォ

ーマットのものを用意する。また次項で使用する更

新先のワークファイルを【図6】のDDSのようなレイ

アウトで作成しておく。

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

MIGARO Technical Report 005

図 4 デモプログラムのロジックデモプログラムのロジック

この部分がExcel
出力ロジック｝

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

図 5 Excel4Delphiに読み込ませるブックExcel4Delphiに読み込ませるブック

図 6 今回用のワークファイル（WKTR17）のレイアウト今回用のワークファイル（WKTR17）のレイアウト

まずDelphiで新規プロジェクトを作成し、画面にコンポーネ

ントを配置していく。ここでは各入力項目のためのTEdit、各

種処理を行うTButton、および各キャプションのための

TLabelを配置する【図7】。

006 MIGARO Technical Report

図 7 画面設計レイアウト画面設計レイアウト

ソース 1

ソース 2

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

MIGARO Technical Report 007

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

次にロジックを記述していく。宣言部のuses節に「Excel4

Delphi」および「Excel4Delphi.Stream」を、Private宣言

に変数『bOpened』（Boolean型）および『workBook』

（TZWorkBook型）を宣言する。

TZWorkBookはブック全体を包括するクラスで、今回は

コンポーネントのように使用するが、Excel4Delphiでは

カスタムコンポーネントは無く、付属のパッケージをイン

ストールしてもパレット（ツールパレット）に項目は追加さ

れない。そのため、今回はクラス（今回はTZWorkBook型

の変数『workBook』）を画面生成時に一緒に生成し、ク

ローズ時に一緒に解放するような記述としている。その際

の処理を【ソース1】のように記述する。また、画面上部の

「ブックを開く」ボタンを押した際の処理を【ソース2】のよ

うに記述し、「ブックを閉じる」ボタンを押した際の処理を

【ソース3】のように記述する。

MIGARO

Excel4Delphi 画面の生成時とクローズ時

Excel4Delphi ブックを開く

{***

 画面生成時
***}

procedure TForm1.FormCreate(Sender: TObject);
begin
// TZWorkBookクラス生成

workBook := TZWorkBook.Create(nil);
end;

{***
 画面クローズ時

***}
procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin

// TZWorkBookクラス解放
workBook.Free();

end;

{***

 ブックを開くボタン
***}

procedure TForm1.btnOpenBookClick(Sender: TObject);
begin
// オープン済の場合は処理中断

if bOpened then
begin

ShowMessage('開いているブックを先に閉じてください。');
Abort;

end;

// ブックが存在しない場合は処理中断

if not(FileExists(edtXLSX.Text)) then
begin
ShowMessage('指定されたファイルが存在しません。');
Abort;

end;

// フルパスを指定してブックを開く
workBook.LoadFromFile(edtXLSX.Text);

// オープン済フラグをTrueに設定

bOpened := True;

ShowMessage('ブックを開きました。');
end;

ソース 3

ソース 4

次に設計画面の中央部にある「セル値を表示」ボタンを押し

た際の処理を【ソース4】のように記述する。この処理の目的

は、当サンプル内で取得するブック内の各セルの値を確認

008 MIGARO Technical Report

し、桁あふれや型不正などのエラーを防ぐことである。調査

の結果、詳細は後述するが、いくつか工夫が必要なポイント

があった。

Excel4Delphi ブックを閉じる

Excel4Delphi セル値を表示ボタン

{***

 ブックを閉じるボタン
***}

procedure TForm1.btnCloseBookClick(Sender: TObject);
begin
// 未オープンエラーの防止

if not bOpened then
begin

ShowMessage('ブックが開かれていません。');
Abort;

end;

// オープン済フラグをFalseに設定

bOpened := False;

ShowMessage('ブックを閉じました。');
end;

{***

セル値を表示ボタン（取得結果を検証するための実装例）
***}

procedure TForm1.btnCheckCellClick(Sender: TObject);
var
iCol, iRow: Integer;
sText: String;

begin

// 未オープンエラーの防止

if not bOpened then
begin

ShowMessage('ブックが開かれていません。');
Abort;

end;

// 列番号と行番号を整数値にセット（それぞれ0始まり）

iCol := StrToIntDef(edtCol.Text, -1);
iRow := StrToIntDef(edtRow.Text, -1);
if (iCol < 0) or (iRow < 0) then
begin

ShowMessage('列番号または行番号が正しくありません。');
Abort;

end;

// 最初のシートにある指定セルの値を取得（シートも0始まり）
sText := workBook.Sheets[0].Cell[iCol, iRow].AsString;
edtText.Text := sText;

end;

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

MIGARO Technical Report 009

ここまで記述できたら、プロジェクトをコンパイルして実行

してみよう。ブックのパスに【図5】で示した注文書のフルパ

スを指定して開く。列番号および行番号（いずれも0始ま

り）を指定して「セル値を表示」ボタンを押すと、それぞれ

のセルの値を取得できていることが確認できる。なお今回

は単一シートだが、シート番号も0始まりである。

取得値を一通りチェックしていると、想定に対して違和感

があるセルが見つかるだろう【図8】。

ここで問題になるセル値は日付値と漢字かな交じりの文

字列である。前者はExcelの内部では日付に対応する数値

でデータを保持しているため、ワークに更新する際は日付

型に直す必要があることがわかった。そして後者はExcel

で見えている文字列に加えて「ふりがな」まで取得されてし

まっている。このままでは想定の値と異なるだけではなく

更新時に桁あふれをおこす可能性もある。ここからはこの

現象を改善するため、Excel4Delphiのソースを修正して

いく。

図 8 データ型によって取得される値の違いデータ型によって取得される値の違い

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

図 9 XLSXブック内のXML階層構造XLSXブック内のXML階層構造

図 10 XML内の文字列セルのデータ部分XML内の文字列セルのデータ部分

前章でも触れた通りXLSX形式ファイルはXMLの集合体な

ので、そのXMLの構造がわかればロジックから該当の部分

を特定することができる。今回の場合はブックをコピーして

拡張子を「XLSX」から「ZIP」に変えたものを作成し、それを

010 MIGARO Technical Report

任意の方法で解凍する。その中にある「sharedStrings.

xml」というXMLの中に該当の部分が見つかった【図9】

【図10】。

ソース 5

このXMLの構造をテキストベースで解読していくと、

『<si>～～～</si>』の部分が1つのセルの値になってい

て、その中にある『<t>～～～</t>』の部分を全て結合して

セル値として返されているのが読み取れる。

さらにXML内の法則を探っていくと、『<rPh～～>～～

</rPh>』という部分で、何文字目から何文字目までにふり

がなを割り当てているという設定も読み取れる。従って、こ

の部分をセルの値として返さないようにExcel4Delphiの

ソースを修正していけばよい。

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

MIGARO Technical Report 011

Excel4Delphiでは、ブックのオープン時に内部の全ての

情報が読み込まれている。そのため、Excel4Delphi側の

ソースでブックの読み込みを行っている「Excel4Del-

phi.Stream.pas」を必要に応じてバックアップを取った

上で開く。その中のロジック（「ZEXSLXReadShared-

Strings」関数内）に【ソース5】のように手を加えることで、

『<t>～～～</t>』の部分を結合してセル値にするというロ

ジックのうち『<rPh～～～>～～～</rPh>』部分の中にあ

る『<t>～～～</t>』を無視させることができる。

これでXLSXファイルにある各セルの内容をふりがな抜き

で表示させることができる。

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

Excel4Delphi セル値の文字列からふりがなを除去

// ※「Excel4Delphi.Stream.pas」ユニット内（★★注釈箇所のみを追加する）

function ZEXSLXReadSharedStrings(var Stream: TStream; out StrArray: TStringDynArray;
out StrCount: Integer): Boolean;
var

Xml: TZsspXMLReaderH;
s: string;
k: Integer;
rs: TRichString;

brPh: Boolean; // ★★ MIGARO ADD 判定用フラグ

begin
Result := false;
Xml := TZsspXMLReaderH.Create();
try

【中 略】
else if Xml.IsTagClosedByName('charset') then
rs.Font.charset := StrToIntDef(Xml.Attributes['val'], 0);

// ★★

end;
end;

 MIGARO ADD begin 「rPh」で始まるタグ内は後続処理で読ませない

if Xml.IsTagStartByName('rPh') then
begin

brPh := True; // 判定用フラグをTrueにする
end;

// ★★ MIGARO ADD end

if Xml.IsTagEndByName('t') then
begin

if (k > 1) then

// ★★

s := s + sLineBreak;
 MIGARO ADD begin 「rPh」で始まるタグ内では読まない

if (brPh) then
begin

brPh := False; // 判定用フラグをFalseに戻す

// ★★

end

else

 MIGARO ADD end ↓↓この行は「rPh」で始まるタグ内以外でのみ読む
s := s + Xml.TextBeforeTag;

end;
if Xml.IsTagEndByName('r') then

【中 略】
Result := true;

finally

Xml.Free();
end;

end; // ZEXSLXReadSharedStrings

ソース 6

3-2. 読み込んだブックの内容をワークに更新

前項で実装したロジックを基に、本項では必要なセルの値

を読み取ってIBM iのワークファイルに更新する処理を作成

する。画面にFireDAC接続を行うためのTFDConnection・

TFDQuery・TFDPhysCO400DriverLinkを配置し、画面

表示時処理の中にIBM iへの接続ロジックを記述する。また

画面クローズ時にIBM iからの切断処理を記述する。

FireDACの接続や切断についての詳細は、過去のミガロ.テ

クニカルレポート「FireDAC実践プログラミングテクニッ

ク」を参考に設定して頂きたい

（https://www.migaro.co.jp/tr/no11/tech/11_01_02.pdf）。

012 MIGARO Technical Report

「ワークに更新」ボタンを押した時の処理を【ソース6】に記述

する。ワークファイルは前項で作成した【図6】のレイアウト

を使用しており、ヘッダー・明細いずれの項目も横持ちする

ようフィールド設計している。日付値の更新については【ソー

ス6】で記載のように、5桁のデフォルト値（1899/12/30から

の通算日数）をYYYYMMDD形式の8桁の整数に変換して

更新している。更新結果は【図11】のようなイメージとなって

いる。

Excel4Delphi ワークに更新ボタン

{***

ワークに更新ボタン
***}

procedure TForm1.btnXLStoXWRKClick(Sender: TObject);
var
i: Integer; // for文用

sTEMP: String; // 日付計算用
dTEMP: TDateTime; // 日付計算用

begin

// 未オープンエラーの防止
if not bOpened then

begin
ShowMessage('ブックが開かれていません。');

Abort;
end;

// ※※ワークファイルの初期化は省略、必要に応じて行う※※

// 更新SQL設定

qryU.SQL.Text := ' INSERT INTO YSADALIB/WKTR17 (' +
+
+

' WKHANO, WKHADT, WKSICD, WKSINM, '

' WKTNNM, WKTEL, WKFAX, WKHICD, '
' WKHINM, WKNOKI, WKSURY, WKTANI, ' +

+
+

' WKNOCD, WKNONM, WKBIK1, WKBIK2 ' +
') VALUES (' +
' :WKHANO, :WKHADT, :WKSICD, :WKSINM, '

' :WKTNNM, :WKTEL, :WKFAX, :WKHICD, '
' :WKHINM, :WKNOKI, :WKSURY, :WKTANI, ' +
' :WKNOCD, :WKNONM, :WKBIK1, :WKBIK2) ';

with workBook.Sheets[0] do // 対象ブックの最初のシートを参照

begin
// ヘッダー項目をパラメータにセット
qryU.ParamByName('WKSICD').AsString := Cell[3, 2].AsString; // D3 仕入先CD

qryU.ParamByName('WKSINM').AsString := Cell[4, 2].AsString; // E3 仕入先名

qryU.ParamByName('WKTNNM').AsString := Cell[3, 3].AsString; // D4 ご担当者名
qryU.ParamByName('WKTEL').AsString := Cell[7, 3].AsString; // H4 TEL
qryU.ParamByName('WKFAX').AsString := Cell[7, 4].AsString; // H5 FAX

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

MIGARO Technical Report 013

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

// Q3 発注日（YYYYMMDD形式の整数に変換）
sTEMP := Cell[16, 2].AsString;
dTEMP := StrToIntDef(sTEMP, 0);
qryU.ParamByName('WKHADT').AsInteger :=

StrToInt(FormatDateTime('YYYYMMDD', dTEMP));

// 明細項目をパラメータにセットし、更新を行う

for i := 1 to 12 do // 8～31行目の明細部の値をセット
begin

if (Cell[2, (i*2)+5].AsString <> '') then // 発注№が空の行を除く

begin
// C8～30 発注№

qryU.ParamByName('WKHANO').AsString := Cell[2, (i*2)+5].AsString;
// D8～30 品番

qryU.ParamByName('WKHICD').AsString := Cell[3, (i*2)+5].AsString;
// E8～30 品名
qryU.ParamByName('WKHINM').AsString := Cell[4, (i*2)+5].AsString;
// I8～30 希望納期（YYYYMMDD形式の整数に変換）
sTEMP := Cell[8, (i*2)+5].AsString;

dTEMP := StrToIntDef(sTEMP, 0);
qryU.ParamByName('WKNOKI').AsInteger :=

StrToInt(FormatDateTime('YYYYMMDD', dTEMP));
// K8～30 数量
qryU.ParamByName('WKSURY').AsInteger :=

StrToIntDef(Cell[10,(i*2)+5].AsString, 0);
// L8～30 単位
qryU.ParamByName('WKTANI').AsString := Cell[11,(i*2)+5].AsString;
// M8～30 納入場所コード
qryU.ParamByName('WKNOCD').AsString := Cell[12,(i*2)+5].AsString;
// N8～30 納入場所名

qryU.ParamByName('WKNONM').AsString := Cell[13,(i*2)+5].AsString;
// O8～30 備考１

qryU.ParamByName('WKBIK1').AsString := Cell[14,(i*2)+5].AsString;
// O9～31 備考２

qryU.ParamByName('WKBIK2').AsString := Cell[14,(i*2)+6].AsString;

// 更新実行

qryU.ExecSQL;
end;

end;

ShowMessage('ワークに更新しました。');

// ※※このあとRPGを呼び出す等の方法で更新をおこなう※※

end;
end;

図 11 ワークへの更新結果イメージワークへの更新結果イメージ

なおここではExcelから取得した文字列がワークのフィール

ド長に対して長すぎた場合の桁あふれチェックについては

考慮していない。

必要に応じて弊社の技術Tipsにある桁あふれ対策の記事

（https://www.migaro.co.jp/tips/2910/）を参照いただ

きたい。

3-3. ワークから読み込んだ内容をXLSXブックに更新

ここからは、IBM iのワークファイルから読み込んだ内容

を、Excel4Delphiを使ってXLSXのブックに更新するサン

プルを作成していく。今回はサンプルなので、前項で使用し

たワークファイルのレイアウトをそのまま流用する。また雛

型となるXLSXのブックについても前項の注文書のフォー

014 MIGARO Technical Report

マットを流用し、【図12】のように値をクリアしたものを用意

しておく。

画面にデータ参照用のTFDQueryと出力処理を記述する

ためのTButtonを配置し、データ参照およびExcel出力用

のロジックを【ソース7】のように記述する。

ソース 7

図 12 注文書フォーマットの雛形イメージ注文書フォーマットの雛形イメージ

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

MIGARO Technical Report 015

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

Excel4Delphi ワークから出力ボタン

{***

ワークから出力ボタン
***}

procedure TForm1.btnWRKtoXLSXClick(Sender: TObject);
var

iCnt: Integer;
sTEMP: String;

// 明細行数保管用

 // ファイル名計算用
begin

// 取得SQL設定
qryS.Close;
qryS.SQL.Text := ' SELECT * FROM YSADALIB/WKTR17 ' +

' WHERE (WKHADT = :WKHADT) ';

// データ取得（今回はサンプルのため、特定発注日のデータのみを対象とする）
qryS.ParamByName('WKHADT').AsInteger := 20240905;
qryS.Open;

// 雛型のブックを開く

if bOpened then
begin

ShowMessage('現在開かれているブックを閉じます。');
end;

016 MIGARO Technical Report

// フルパスを指定して雛型のブックを開く（EXEと同階層の固定ファイル名）
workBook.LoadFromFile(ExtractFilePath(ParamStr(0)) + '注文書雛型.xlsx');

bOpened := True; // オープン済フラグ

// 先頭シートのセルに値をセット

with workBook.Sheets[0] do
begin

Cell[16,2].AsString := FormatFloat(
'0000/00/00', qryS.FieldByName('WKHADT').AsInteger); // Q3 発注日

Cell[3, 2].AsString := qryS.FieldByName('WKSICD').AsString; // D3 仕入先CD

Cell[4, 2].AsString := qryS.FieldByName('WKSINM').AsString; // E3 仕入先名
Cell[3, 3].AsString := qryS.FieldByName('WKTNNM').AsString; // D4 ご担当者名

Cell[7, 3].AsString := qryS.FieldByName('WKTEL').AsString; // H4 TEL
Cell[7, 4].AsString := qryS.FieldByName('WKFAX').AsString; // H5 FAX

Cell[16,4].AsInteger := qryS.RecordCount; // Q5 件数

iCnt := 0;
while not(qryS.Eof) do
begin

Inc(iCnt);

// C8～30 発注№

Cell[2, (iCnt*2)+5].AsString := qryS.FieldByName('WKHANO').AsString ;
// D8～30 品番

Cell[3, (iCnt*2)+5].AsString := qryS.FieldByName('WKHICD').AsString ;
// E8～30 品名
Cell[4, (iCnt*2)+5].AsString := qryS.FieldByName('WKHINM').AsString ;
// I8～30 希望納期
Cell[8, (iCnt*2)+5].AsString := FormatFloat(

'0000/00/00', qryS.FieldByName('WKNOKI').AsInteger);
// K8～30 数量
Cell[10,(iCnt*2)+5].AsInteger := qryS.FieldByName('WKSURY').AsInteger;

 qryS.FieldByName('WKTANI').AsString ;

 qryS.FieldByName('WKNOCD').AsString ;

 qryS.FieldByName('WKNONM').AsString ;

 qryS.FieldByName('WKBIK1').AsString ;

// L8～30 単位
Cell[11,(iCnt*2)+5].AsString :=
// M8～30 納入場所コード

Cell[12,(iCnt*2)+5].AsString :=
// N8～30 納入場所名

Cell[13,(iCnt*2)+5].AsString :=
// O8～30 備考１

Cell[14,(iCnt*2)+5].AsString :=
// O9～31 備考２
Cell[14,(iCnt*2)+6].AsString := qryS.FieldByName('WKBIK2').AsString ;

qryS.Next;
end;

end;

// 書式の設定（【ソース8】参照）

// ブックの保存処理

sTEMP := '注文書_' + FormatDateTime('YYYYMMDD_HHNNSS', Now) + '.xlsx';
workBook.SaveToFile(ExtractFilePath(ParamStr(0)) + sTEMP);

bOpened := False; // オープン済フラグ

ShowMessage('ブックを保存しました。');
end;

図 13 そのまま帳票出力した結果そのまま帳票出力した結果

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

MIGARO Technical Report 017

プロジェクトをコンパイルして実行してみると、ワークファ

イルにあらかじめ登録しておいたデータが参照され、XLSX

のブックにそのデータが【図13】のように出力されているこ

とを確認できる。

ここで雛型のブックとレイアウトを見比べてみると、以下

のような見た目の差異が見つかった。

・標準設定のままのセルのフォントが欧文標準の「Arial」

に変わり、全体的に横に間延びしている。

・シート見出しの色が黒に変わっている。

ここからは、これらの課題を1つずつ調査・解決していき

たい。

まずは欧文フォントを元に戻していく。Excel4Delphiと

Excelの仕組みを解析した結果、元のブックでスタイルが

標準になっている（セルの書式設定がデフォルトのまま

の）セルにおいて発生するようだ。これを解決するには、

標準スタイルのフォントを元のExcelと揃えればよい。

Excelにおいて、各ブックの標準スタイルは【図14】の手

順で参照や変更ができる。

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

ソース 8

図 14 ブックの標準スタイルの確認ブックの標準スタイルの確認

018 MIGARO Technical Report

元のブックが作成されたExcelのバージョンやOSの言語に

よって標準スタイルは異なるようだが、Excel4Delphiの標

準スタイルと今回の元のブックで差異があると【図13】のよ

うな見た目になり、フォントや改ページ位置などに差異が発

生する。

元のブックと出力したブックで標準スタイルの差異が確認で

きたら、個別ソース側でExcel出力前（保存の直前）に【ソー

ス8】のようにロジックを追加する。これで出力されるブック

の標準スタイルが元のブックと統一され、フォントや改ペー

ジ位置を揃えることができるだろう。全体的に間延びしてい

た各列の横幅もこの修正によって改善する。

Excel4Delphi 標準スタイルのフォントを元のブックと合わせる

// 標準スタイルのフォントを元のブックと合わせてフォントや印刷範囲を直す

workBook.Styles.DefaultStyle.Font.Name := '游ゴシック';
workBook.Styles.DefaultStyle.Font.Size := 11;

ソース 9

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

MIGARO Technical Report 019

続いてシート見出しの色が黒くなっている現象を元に戻

す。この原因はシート見出しの色を扱うXML内の

「tabColor」という要素が、Excel4Delphiで保存時には

色なしのシートも含めて必ず設定されていることにあるよ

うだ（そのため、元から色を設定しているシートは正しい色

で保存される）。元々見出しの色が無かったシートにはダ

ミーの色が更新されているため、これを無効化していく。

修正手順としては、ブックへの書き込みを行っている

「E x c e l 4 D e l p h i . S t r e a m . p a s 」のロジック

（「ZEXLSXCreateSheet」関数内）に【ソース9】のように

手を加えると、元々見出しの色が無かったシートには

「tabColor」要素を書き込ませないことで、シートの色を

正常化することができる。 D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

Excel4Delphi シート見出しの色が無いシートには設定しない

// ※「Excel4Delphi.Stream.pas」ユニット内（★★注釈箇所のみを追加する）

function ZEXLSXCreateSheet(var XMLSS: TZWorkBook; Stream: TStream; SheetNum: Integer;
 var SharedStrings: TStringDynArray; const SharedStringsDictionary: TDictionary<string,

Integer>;
 TextConverter: TAnsiToCPConverter; CodePageName: String; BOM: ansistring;
 const WriteHelper: TZEXLSXWriteHelper): Integer;
var

Xml: TZsspXMLWriterH; // писатель

sheet: TZSheet;
procedure WriteXLSXSheetHeader();
var

s: string;
b: Boolean;

SheetOptions: TZSheetOptions;
procedure _AddSplitValue(const SplitMode: TZSplitMode; const SplitValue: Integer;

const AttrName: string);
var

s: string;

b: Boolean;
begin

【中 略】
end; // _AddSplitValue
procedure _AddTopLeftCell(const VMode: TZSplitMode; const vValue: Integer; const

HMode: TZSplitMode;
const hValue: Integer);

var

isProblem: Boolean;
begin

【中 略】
end; // _AddTopLeftCell

begin

Xml.Attributes.Clear();
Xml.Attributes.Add('filterMode', 'false');

Xml.WriteTagNode('sheetPr', true, true, false);
//★★if (sheet.TabColor <> 5) then

begin //★★
 MIGARO ADD シート見出しの色がある時のみ
 MIGARO ADD

Xml.Attributes.Clear();
Xml.Attributes.Add('rgb', 'FF' + ColorToHTMLHex(sheet.TabColor));

Xml.WriteEmptyTag('tabColor', true, false);
end; //★★ MIGARO ADD
Xml.Attributes.Clear();
if sheet.ApplyStyles then

【以下略】

⾊が無いシートにはダミーで「5」が設定されてしまうのを防ぐ

図 15 標準スタイル設定後の出力ブックのイメージ標準スタイル設定後の出力ブックのイメージ

020 MIGARO Technical Report

ここまでの修正を行うことで、【図15】のように元の雛型に近

い書式設定のブックを生成することができた。内部でXML

を生成している都合上元のブックとミリメートル単位で完全

に同じとはいかないが、内容の確認は十分に可能だろう。

図 16 IntraWeb　初期画面IntraWeb　初期画面

ソース 10

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

MIGARO Technical Report 021

4. IntraWebでのExcel4Delphi活用

前章まではExcel4Delphiの概要や基本的な使い方を紹

介したが、ここからは応用編として、OLEが使用できない

IntraWebで想定される活用パターンを紹介する。

IntraWebのモジュールはWebサーバー上で動作するた

め、OLEを使ったExcelの取込や出力を行うことができな

い。リクエストの度にWebサーバー側でExcelを起動して

処理を行うことが現実的でないためである。Excel4

DelphiのようなExcelが不要なツールであれば、この課題

を解決できる。

本項では、前章で取込に使用したXLSXブックを

IntraWebの画面上に取り込んでグリッドに表示させるサ

ンプルを作成する。まずはIntraWebのプロジェクトを新

規作成し、IWForm1の画面上にファイルアップロードに

使用するTIWFileUploaderと、取り込んだ結果を表示さ

せるためのTIWGridを配置する。この時点でプロジェクト

をコンパイルしてブラウザで実行すると【図16】のような画

面が表示される。

ここからXLSXブックの取込を実装していく。まずは画面に

配置したTIWGridのColumnCountプロパティを「7」に

設定し、ソースのuses節に前章のサンプルと同じように

「Excel4Delphi」「Excel4Delphi.Stream」を追加する。

次にString変数「sFileName」をグローバル変数に定義

し、TIWFileUploaderのファイルアップロード時の処理

を【ソース10】のように記述する。今回はサンプルのため、

今アップロードしたファイルの名前を便宜上グローバル

変数に保持しておく目的である。また、TIWButton（取り

込みボタン）を画面に配置し、そのOnClick処理を【ソース

11】のように記述する。

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

Excel4Delphi IntraWebでブックのアップロード完了時

{***

 IWFileUploader ブックのアップロード完了時処理
***}

procedure TIWForm1.IWFileUploader1AsyncUploadCompleted(Sender: TObject;
 var DestPath, FileName: string; var SaveFile, Overwrite: Boolean);
begin

// 引数をグローバル変数に保管
sFileName := FileName; // アップロードしたファイル名

end;

ソース 11

022 MIGARO Technical Report

Excel4Delphi IntraWebで取り込みボタン押下時

{***

 IWFileUploader 取り込みボタン押下時
***}

procedure TIWForm1.IWButton1Click(Sender: TObject);
var

workBook: TZWorkBook; // Excel4Delphiのクラス

i: Integer; // for文用
sTEMP: String; // 日付計算用

dTEMP: TDateTime; // 日付計算用

begin
// ファイルの形式チェック（XLSX・XLSM以外をエラーにする）

if (ExtractFileExt(UpperCase(sFileName)) <> '.XLSX') and
(ExtractFileExt(UpperCase(sFileName)) <> '.XLSM') then

begin

WebApplication.ShowMessage('ファイルの形式が正しくありません。');
Exit; // Abortすると画面にエラーが出るためExitで抜ける

end;

// 行カウント初期化

IWGrid1.RowCount := 1;
// グリッドのタイトル設定

IWGrid1.Cell[0, 0].Text := '発注№';
IWGrid1.Cell[0, 1].Text := '品番';

IWGrid1.Cell[0, 2].Text := '品名';
IWGrid1.Cell[0, 3].Text := '希望納期';
IWGrid1.Cell[0, 4].Text := '数量';
IWGrid1.Cell[0, 5].Text := '単位';
IWGrid1.Cell[0, 6].Text := '納入場所名';

// TZWorkBookクラス生成
workBook := TZWorkBook.Create(nil);
try

// キャッシュフォルダ内のパスを指定してブックを開く

workBook.LoadFromFile(WebApplication.UserCacheDir + sFileName);

// Excel4Delphiでブックを開き、明細に表示する

// ※サンプルのため、ここでは一部フィールドのみ
with workBook.Sheets[0] do // 対象ブックの最初のシートを参照

begin

+ ' 様向け';
// E3 仕入先名（ここではグリッドのタイトルにする）
IWGrid1.Caption := '注文書 ' + Cell[4, 2].AsString

// 明細項目をパラメータにセットし、更新を行う

// 8～31行目の明細部の値をセットfor i := 1 to 12 do

begin
if (Cell[2, (i*2)+5].AsString <> '') then // 発注№が空の行を除く

begin
// 行追加

IWGrid1.RowCount := IWGrid1.RowCount + 1;

図 17 IntraWeb XLSXブックを取り込んで明細に表示IntraWeb XLSXブックを取り込んで明細に表示

ここまで実装した状態でプロジェクトをコンパイルしてブ

ラウザで実行すると、【図17】のようにブックが取り込まれ

て内容を確認することができる。

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

MIGARO Technical Report 023

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

// C8～30 発注№

IWGrid1.Cell[i, 0].Text := Cell[2, (i*2)+5].AsString;
// D8～30 品番

IWGrid1.Cell[i, 1].Text := Cell[3, (i*2)+5].AsString;
// E8～30 品名
IWGrid1.Cell[i, 2].Text := Cell[4, (i*2)+5].AsString;
// I8～30 希望納期（書式を設定してセット）
sTEMP := Cell[8, (i*2)+5].AsString;

dTEMP := StrToIntDef(sTEMP, 0);
IWGrid1.Cell[i, 3].Text := FormatDateTime('YYYY/MM/DD', dTEMP);
// K8～30 数量

IWGrid1.Cell[i, 4].Text := Cell[10,(i*2)+5].AsString;
// L8～30 単位

IWGrid1.Cell[i, 5].Text := Cell[11,(i*2)+5].AsString;
// N8～30 納入場所名
IWGrid1.Cell[i, 6].Text := Cell[13,(i*2)+5].AsString;

end;
end;

end;

finally

FreeAndNil(workBook); // TZWorkBookクラス解放
end;

end;

ソース 12

読み込みについて紹介は本稿ではここまでとするが、前章で

紹介した手順を活用することで、取り込んだ内容をIBM iへ

更新するロジックを作成することもできるだろう。

最後に、Excel4Delphiで出力したXLSXブックをブラウザ

からダウンロードさせる方法を紹介する。

IntraWebでファイルをダウンロードする際は、キャッシュデ

ィレクトリにファイルを出力した後にTFileStreamを生成し

てMIMEタイプを指定の上、SendStreamを行う。例えば

Excel4Delphiに付属している【図3】【図4】のデモプログラ

ムで作成できるものと同じXLSXブックを出力する場合は

【ソース12】のように記述することで、ブラウザからダウンロ

ードできるようになる。

024 MIGARO Technical Report

Excel4Delphi IntraWebでのXLSXブック出力処理

{***

 ブックの作成出力処理
***}

procedure TIWForm1.IWButton2Click(Sender: TObject);
var
sXLSXname: String;
workBook: TZWorkBook;
Strm : TStream;

// XLSXのファイル名

// Excel4Delphiのクラス
// XLSX出力ストリーム

begin

// XLSXのファイル名
sXLSXname := FormatDateTime('YYYYMMDD_HHNNSS', Now) + '.xlsx';

// TZWorkBookクラス生成

workBook := TZWorkBook.Create(nil);
try
// XLSXを生成してキャッシュに出力（ここではDemoと同じロジック）

workBook.Sheets.Add('Sheet1');
:= 10;workBook.Sheets[0].ColCount

workBook.Sheets[0].RowCount := 10;
workBook.Sheets[0].CellRef['A', 0].AsString := 'Hello';
workBook.Sheets[0].RangeRef['A', 0, 'B', 2].Merge();
workBook.SaveToFile(WebApplication.UserCacheDir + sXLSXname);

// キャッシュにストリーム生成

Strm := TFileStream.Create(
WebApplication.UserCacheDir + sXLSXname, fmOpenRead or fmShareDenyNone);

// MIMEを指定し、XLSXをブラウザからダウンロードする

WebApplication.SendStream(Strm, True,
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet',
sXLSXname);

finally

FreeAndNil(workBook); // TZWorkBookクラス解放

// ストリームは解放しない（ダウンロードできなくなる）
end;

end;

5. まとめ

本稿では、海外のExcel4Delphiライブラリを用いて

DelphiとExcelと連携する手法を紹介した。

Excelの仕組みがブラックボックスになっているため、

Excelのインストール不要で利用できるツールやライブラ

リは少ない。今回紹介したようなツールは業務アプリケー

ションの開発や運用において役立つシーンが多くなるだ

ろう。

本稿が、Delphi/400プログラムとExcelの連携強化の一

助となれば幸いである。

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

MIGARO Technical Report 025

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

	A4 - 210×297(002p)
	A4 - 210×297(003p)
	A4 - 210×297(004p)
	A4 - 210×297(005p)
	A4 - 210×297(006p)
	A4 - 210×297(007p)
	A4 - 210×297(008p)
	A4 - 210×297(009p)
	A4 - 210×297(010p)
	A4 - 210×297(011p)
	A4 - 210×297(012p)
	A4 - 210×297(013p)
	A4 - 210×297(014p)
	A4 - 210×297(015p)
	A4 - 210×297(016p)
	A4 - 210×297(017p)
	A4 - 210×297(018p)
	A4 - 210×297(019p)
	A4 - 210×297(020p)
	A4 - 210×297(021p)
	A4 - 210×297(022p)
	A4 - 210×297(023p)
	A4 - 210×297(024p)
	A4 - 210×297(025p)

