
026 MIGARO Technical Report

直感的に使える操作性を工夫した
Webシステム開発（IntraWeb）の機能紹介

1. はじめに
2. 直感的に操作しやすいカレンダー機能
3. 視覚的に分かりやすいローディング画面
4. フレームを使用した明細グリッド
5. さいごに

Delphi/400

株式会社ミガロ.
システム事業部システム１課
都地　奈津美

略　歴

生年月日：1989年8月19日
最終学歴：2012年 関西学院大学 理工学部卒業
入社年月：2012年4月　株式会社ミガロ.入社
社内経歴：2012年4月　システム事業部配属

現在の仕事内容：

主にDelphi/400を使用したシステム受託開発と
システム保守を担当している。開発スキルの向上
を目指し、日々精進している。

略　歴

生年月日：1983年9月27日
最終学歴：2006年 近畿大学 理工学部卒業
入社年月：2006年4月　株式会社ミガロ．入社
社内経歴：2006年4月　システム事業部配属

現在の仕事内容：

RPGやDelphi/400などの開発経験を経て、現在
は要件定義から安定稼働フォローまで、システム
開発全般に携わっている。

略　歴

生年月日：1982年11月19日
最終学歴：2006年 近畿大学 理工学部卒業
入社年月：2006年4月　株式会社ミガロ．入社
社内経歴：2006年4月　システム事業部配属

現在の仕事内容：

主にDelphi/400を利用したシステムの受託開
発・保守をメインに担当。設計から運用・フォロー
までプロジェクト全般に関わることが多い。

株式会社ミガロ.
システム事業部システム１課
田村　洋一郎

株式会社ミガロ.
システム事業部システム１課
宮坂　優大

図 1 TIWCalendarのイメージTIWCalendarのイメージ

図 2 今回紹介するカレンダーのイメージ今回紹介するカレンダーのイメージ

1.はじめに

Webシステムの需要は増加し、当社でも多くの受託開発を

行っている。オンラインショッピングサイトなどの外部ユー

ザー向けWebシステム（ECサイト）では、さまざまなユー

ザーが利用するため、直感的に使える操作性が求められ

る。そこで本稿では、システム開発チームが実際の開発時

に工夫し、実装したユーザーインターフェース機能を紹介

する。

また今回紹介するWe bシステムの開発手法は、

Delphi/400を活用したIntraWebによるものである。

IntraWebを使用すると、従来の GUI アプリケーションと

同様にWeb システムを構築することができるため、ぜひ活

用して頂きたい。

2. 直感的に操作しやすいカレンダー機能

本章では、カレンダー機能を紹介する。IntraWebには標

準でTIWCalendarというカレンダーコンポーネントが存

在する【図1】。複雑なソースコードを記述することなく、カ

レンダー機能を実装できる便利なコンポーネントである。

本章では、曜日毎に色やフォントを工夫し、直感的に操作

しやすいカレンダー機能を実装する手法を紹介する。今

回作成するカレンダーの完成イメージは【図2】の通りで

ある。

MIGARO Technical Report 027

本稿では、以下のUI機能を紹介する。

【第2章】直感的に操作しやすいカレンダー機能

【第3章】視覚的に分かりやすいローディング画面

【第4章】フレームを使用した明細グリッド

今回の機能を実装したサンプルを活用して頂けるよう、本

稿の最後にダウンロードURLを記載している。本サンプル

はダウンロード可能であるため、本稿へのソースの記載は

一部抜粋とする。また、サンプルは、スタンドアロン モード

を使用して作成している。

なお本稿では、Delphi/400 11 AlexandriaとIntraWeb

15を使用し、動作環境は、MicrosoftのEdgeを採用する。

また、Delphi/400におけるIntraWebの基本的な開発手

順について本稿では割愛するが、ミガロ．のサイト内に詳

しく紹介している資料があるのでそちらを参照して頂きた

い。

＜参照先＞

https://www.migaro.co.jp/ts/27th/Session2.pdf

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

図 3 サンプル画面サンプル画面

図 4 トップページトップページ

図 5 カレンダー機能の構成カレンダー機能の構成

2-1.サンプル画面

カレンダー機能を実装するためのサンプル画面を【図3】の

通りに作成する。

本稿で紹介するサンプルプログラムでは、トップページ

【図4】を作成し、各章のサンプル画面に遷移可能としてい

る。各章のサンプル画面には、トップページに戻るための「前

のページに戻る」(TIWLink)を画面右上に配置している。

028 MIGARO Technical Report

2-2.カレンダー機能の構成

カレンダー機能は、ソースコードが煩雑にならないよう、クラ

ス化による処理の共通化を行う。カレンダーのメイン処理を

集約した「TIWSMPLCalendar」クラス、画面を閉じて呼出

元の画面に戻るための処理を集約した「TIWSMPLLink」ク

ラスの2つを作成する。これらのクラスを使用することで、カ

レンダー全体の機能を実装している【図5】。

ソース 1

ソース 2

MIGARO Technical Report 029

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

2-3.カレンダー(TIWSMPLCalendar)クラス

カレンダー(TIWSMPLCalendar)クラスの宣言部を

【ソース1】、レイアウト情報（罫線、色、フォント等）や選択

不可とする入力制御を行う処理を【ソース2】の通りに記

述する。

カレンダー (TIWSMPLCalendar)クラスの宣言部

カレンダーのセル内容セット処理

TIWSMPLCalendar = class(TIWCalendar)

 private

// 年月
 { Private 宣言 }

 FYear, FMonth: Integer;

 procedure CalendarRenderCell(ACell: TIWGridCell;
const ARow, AColumn: Integer); // カレンダーのセル内容セット処

理

// 生成時処理(コンストラクタ)

 public

 { Public 宣言 }
 constructor Create(AOwner: TComponent); override;

 end;

procedure TIWSMPLCalendar.CalendarRenderCell(ACell: TIWGridCell; const ARow,
 AColumn: Integer);
var

 dDate: TDateTime; // 日付

 iDate: Integer; // 日付(数値)
 sDate: String; // 日付(文字)

 iDayOfWeek: Integer; // 曜日
begin

 inherited;

 // CSSのセット

 Css := 'calendar';

 // ----- タイトル(年月)セット処理 -----

 // タイトル部の場合
 if (ARow = 0) and (AColumn = 1) then

 begin
 // タイトル部をセット：yyyy年mm月

 if (Pos('年', ACell.Text) = 0) then

 begin
// 年月を保管

FYear :=
StrToIntDef(Copy(ACell.Text, Pos(' ', ACell.Text) + 1, Length(ACell.Text)), 0);

FMonth :=

StrToIntDef(Copy(ACell.Text, 1, Pos(' ', ACell.Text) - 2), 0);

// セット
ACell.Text := IntToStr(FYear) + '年' + IntToStr(FMonth) + '月';

 end;

 end;

レイアウト⽤のCSSのセレクタを指定
CSS側でレイアウト情報(罫線、⾊、フォント等)を制御

タイトルに
年⽉を表⽰

ソース 3

030 MIGARO Technical Report

次に、カレンダー(TIWSMPLCalendar)クラスの生成時処

理にカレンダー全体の基本情報や描画イベントに【ソース2】

の関数を指定する【ソース3】。

カレンダー (TIWSMPLCalendar) の生成時処理

 // ----- 選択不可の設定曜日 -----
 if (ARow > 1) and (ACell.Text <> '') then
begin

 // 日付
 iDate := (FYear * 10000) + (FMonth * 100) + StrToIntDef(ACell.Text, 0);
 sDate := FormatFloat('0000/00/00', iDate);
 dDate := StrToDateTime(sDate + FormatDateTime('hh:mm:ss', Now));

 // 曜日を取得
 iDayOfWeek := System.DateUtils.DayOfTheWeek(dDate);

 // CSS側で処理するため、特定のCSSをセット

 // 土曜日の場合、選択不可

 if (iDayOfWeek = 6) then
 begin

Css := Trim(Css + ' cal_disable cal_blue');
 end

 // 日曜日の場合、選択不可

 else if (iDayOfWeek = 7) then
 begin

Css := Trim(Css + ' cal_disable cal_red');
 end;
 end;
end;

⼟曜⽇、⽇曜⽇を判定し、
対象のCSSのセレクタを指定
CSS側でセルの⾊や選択不
可を制御

constructor TIWSMPLCalendar.Create(AOwner: TComponent);
begin
 inherited;

 // 初期化
 CaptionCaptio '';

 Text := '';

 // キャプション

 // テキスト
 Height := 205; // 高さ

 := 3 WidthWidth // 幅

 ZIndex := 0; // 位置

:= cFontName;
 // フォント名
 Font.FontName

 CalendarFont.FontName := cFontName;
 CalendarHeaderFont.FontName := cFontName;
 // フォントサイズ

 Font.Size := cFontSize + 2;
 CalendarFont.Size := cFontSize + 2;

 CalendarHeaderFont.Size := cFontSize + 2;
 // フォント色

:= cFontColor; Font.Color

 CalendarFont.Color := cFontColor;
 CalendarHeaderFont.Color := cFontColor;

 // タイトルは太字
 CalendarHeaderFont.Style := [fsBold]; カレンダー全体の基本情報を指定

ソース 4

MIGARO Technical Report 031

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

2-4.画面を閉じるリンク(TIWSMPLLink)クラス

画面を閉じるリンク(TIWSMPLLink)クラスの宣言部を

【ソース4】の通りに記述する。

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

画面を閉じるリンク(TIWSMPLLink)クラスの宣言部

 // 色

 := clNone;
 := clNone;

:= clNone;

:= clNone;

 BorderColors.Color
 BorderColors.Light
 BorderColors.Dark

 BGColor
 CalendarColor := clNone;

 AlternateCalendarColor := clNone;
 CalendarHeaderColor := clNone;

 // キャプション
 CaptionPrevious := '前月';

 CaptionNext := '次月';

 // フレーム枠を描画

 UseFrame := True;

 // 週始まりは日曜日

 WeekStarts := wsSunday;

 // Asyncモード
 AsyncMode := True;

 // AsyncイベントでのSubmit

 SubmitOnAsyncEvent := False;

 // カレンダーのセル内容セット処理
 OnRenderCell := CalendarRenderCell;
end;

描画イベントに先程記述した「カレン
ダーのセル内容セット処理」を指定

TIWSMPLLink = class(TIWLink)

 private
 { Private 宣言 }

 public

 { Public 宣言 }
// 生成時処理(コンストラクタ) constructor Create(AOwner: TComponent); override;

 end;

ソース 5

図 6 サンプル画面の挙動イメージサンプル画面の挙動イメージ

図 7 OnClickイベントの作成OnClickイベントの作成

032 MIGARO Technical Report

2-5. カレンダーボタンクリック時処理

前述の2-3～2-4で実装したクラスを使用し、カレンダーボタ

ンクリック時にカレンダーを表示、カレンダーの日付選択時

に入力項目に日付をセットする処理を記述する【図6】。

まず、カレンダーボタンのOnClickイベントを作成する【図

7】。次に、前述で実装したクラスを使用し、カレンダーを作成

する処理を記述する【ソース6】。

次に、画面を閉じるリンク(TIWSMPLLink)クラスの生成

時処理に基本情報を指定する【ソース5】。

画面を閉じるリンク(TIWSMPLLink) の生成時処理

constructor TIWSMPLLink.Create(AOwner: TComponent);
begin
 inherited;

 // 初期化
 Font.FontName := cFontName;

 Font.Size := cFontSize;

 // フォント名

 // フォントサイズ
 Font.Color := cFontColor; // フォント色

:= 19; // 高さ Height

 ZIndex := 0; // 位置

 // ボタンのAsyncClick時、画面をロック(ウエイトカーソルを表示)するよう変更
 LockOnAsyncEvents := [aeClick];

 // AsyncイベントでのSubmit
 SubmitOnAsyncEvent := False;
end;

画⾯を閉じるリンクの
基本情報を指定

ソース 6

カレンダー機能の実装は以上である。
MIGARO Technical Report 033

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

カレンダーボタンのクリック時処理
procedure TIWForm2.IWButton1Click(Sender: TObject);
var
 dSetDate: TDateTime; // 日付値(セット用)

 iDate: Integer; // 日付値

 objParent: TWinControl; // 親オブジェクト
 regParent: TIWRegion; // メインRegion

 iTopSelf: Integer; // Top位置
begin

 // 初期化

 objParent := IWForm2; // 親オブジェクト
 iTopSelf := 0; // Top位置

 // 入力値を内部保持

 iDate := Self.DateValue;

 // セットする日付を内部保持

 if (TryStrToDate(FormatFloat('0000/00/00', iDate), dSetDate)) then
 begin

 dSetDate := dSetDate;

 end
 else

 begin
 dSetDate := Now;
 end;

 // 親オブジェクトを取得

 iTopSelf := iTopSelf + objParent.Top; // Top位置

 // メインRegion

 regParent := TIWRegion(objParent);

 // カレンダー関連の作成
 if (FDateCalendar = nil) then

 begin

 // ----- カレンダーの生成 -----
 FDateCalendar := TIWSMPLCalendar.Create(Self);

 with FDateCalendar do
 begin

Parent

Name
BGColor

Left
Top
StartDate

OnDateChange

:= regParent;

:= Self.Name + '_Calendar';
:= clWebWhite;

:= Self.Left;
:= iTopSelf + IWButton1.Top + IWButton1.Height + 10;
:= DateOf(dSetDate);

:= CalendarDateChange; // カレンダーの日付選択処理
FreeNotification(Self);

 end;

 // ----- 画面を閉じるリンクの生成 -----

 FlnkClose := TIWSMPLLink.Create(Self);
 with FlnkClose do

 begin
Parent
Name

Left
Top

Width
Caption
Font.Color

Font.Size

:= FDateCalendar.Parent;
:= Self.Name + '_Calendar_FlnkClose';

:= FDateCalendar.Left + 185;
:= FDateCalendar.Top + 2;

:= Height;
:= '×';

 := clWebBlue;

 := Self.Font.Size + 3;
OnAsyncClick := CalendarlnkCloseAsyncClick; // リンククリック処理

FreeNotification(Self);
 end;
 end

 // カレンダー関連を破棄

 else
 begin

 CalendarDestroy;

 end;
end;

カレンダー
(TIWSMPLCalendar)
クラスを⽣成

画⾯を閉じるリンク
(TIWSMPLLink)
クラスを⽣成

図 8 商品マスタのファイルレイアウト商品マスタのファイルレイアウト

図 9 データモジュール：コンポーネント配置データモジュール：コンポーネント配置

034 MIGARO Technical Report

3. 視覚的に分かりやすいローディング画面

WEBアプリケーションで、入力内容をサーバーへ送信する、

ページ数の多いレポートを出力するなど、時間のかかる処理

を行う場合があるだろう。その際、ブラウザ側はサーバーか

らのレスポンス待ちの状態となり、画面が固まっているよう

に見えてしまう。そこで、ローディング画面の表示により処理

中を示すことで、ユーザーの不安感を減らすことができる。

本章では、Delphi/400とCSSを使用し、処理中にローディ

ング画面を表示する方法を紹介する。

3-1.前提条件

本章では、商品マスタメンテナンス画面を想定し、検索時、更

新時にローディング画面を表示させる。今回は【図8】のDDS

より作成された商品マスタ(SHOHINM)を使用する。

3-2.IBMiデータベースへの接続

接続先情報を設定するためのiniファイルを準備し、【図9】の

通りにデータモジュールにコンポーネントを配置する。

TFDConnectionのプロパティについては過去のミガロ.テ

クニカルレポート「FireDAC実践プログラミングテクニック」

を参考に設定して頂きたい

(https://www.migaro.co.jp/tr/no11/tech/11_01_02.pdf)。

図 10 商品マスタメンテナンス画面：コンポーネント配置商品マスタメンテナンス画面：コンポーネント配置

ソース 7

MIGARO Technical Report 035

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

IBMiデータベースへ接続する処理【ソース7】を記述する。

第4章のサンプル画面からも呼び出せるように、publicセ

クションで共通メソッドとして作成する。

3-3.商品マスタメンテナンス画面の作成

新規画面を作成し、【図10】の通りにコンポーネントを配

置する。

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

データモジュール接続開始処理
procedure TDataModule1.OpenDataBase;

begin

// FireDAC接続

if (not FDConnection1.Connected) then

begin

try

FDConnection1.Params.Values['Database']] := IWServerController.Database;

FDConnection1.Params.Values['ODBCAdvanced'] := 'LibraryOption=';

FDConnection1.Params.Values['User_Name']] := IWServerController.User_Name;

FDConnection1.Params.Values['Password']] := IWServerController.Password;

FDConnection1.LoginPrompt := False;

FDConnection1.Connected := True;

except

raise;

end;

end;

end;

図 11 ローディング画面（フレーム）：コンポーネント配置ローディング画面（フレーム）：コンポーネント配置

図 12 ローディング画面（フレーム）：コンポーネントの追加ローディング画面（フレーム）：コンポーネントの追加

ソース 8

036 MIGARO Technical Report

3-4.ローディング画面の作成

今回実装するローディング画面は、T IWF r am e、

TIWModalWindow、CSSを使用して作成する。まず、

TIWFrameを新規作成し、【図11】の通りにコンポーネント

を配置し、プロパティ値の設定を行う。また、ローディング中

の文言表示用のプロパティを宣言し、画面から呼び出され

た際に、任意の文言を表示できるようにしておく。

次に、3-3で作成した画面に、フレーム表示用のコンポーネ

ントを追加で配置する【図12】。

TIWModalWindowを使用することで、フレームを画面へ

モーダル表示することができる。

ローディング画面表示用の共通関数を画面側に記述する

【ソース8】。共通関数の引数には、ローディング画面表示中

の文言、表示中に実行するイベントを準備し、画面側からの

指定文言の表示、指定イベントの実行を行う。またTIW

TimerのOnAsyncTimerメソッドに、対象イベントの実行、

処理完了後にローディング画面を破棄する処理を記述する

【ソース9】。

ローディング画面の表示

procedure TIWForm3.ShowLoadingFra(AEvent: TNotifyEvent;

ALoadingStr: String = '');

var

Frame1: TIWFrame1;

begin

// ローディング画面の破棄

IWModalWindow1.Close;

FreeAndNilList(IWRegion4);

// イベントのセット

FAfterEvent := AEvent;

ここで、TIWModalWindowのプロパティ・メソッドにつ

いて、ポイントとなる内容を一部抜粋して説明する。

(1)CloseButtonVisibleプロパティ

・True：フレーム右上の「×」ボタンを表示

(2)CloseOnEscKeyプロパティ

・True：Escapeキー押下でフレームを終了

(3)Draggableプロパティ

・True：マウスでフレームを移動できる

MIGARO Technical Report 037

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

(4)HasFooter/HasHeaderプロパティ

・True：フレームのフッター/ヘッダー部を表示

(5)ContentElementプロパティ

・フレームをレンダリングするTControlを指定

※ここでは、【図12】で追加したTIWRegionとする

(6)Showメソッド

・ContentElementプロパティで指定したTControl

 に対し、フレームをレンダリングする

ソース 9

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

TIWTimer のOnAsyncTimerメソッド

// ローディング画面の生成

Frame1 := TIWFrame1.Create(IWRegion4);

Frame1.ParentFrame1.Parent

Frame1.LoadingStr := ALoadingStr;

Frame1.SetSpinnerPosition;

// フレーム(ローディング画面)を画面にレンダリングする

IWModalWindow1.ContentElement := IWRegion4;

IWModalWindow1.Show;

// タイマー開始

IWTimer1.Enabled := True;

end;

procedure TIWForm3.IWTimer1AsyncTimer(Sender: TObject;

EventParams: TStringList);

begin

// タイマー停止

IWTimer1.Enabled := False;

// ローディング画面表示中のイベントを実行

if Assigned(FAfterEvent) then

begin

try

FAfterEvent(nil);

finally

// ローディング画面の破棄

FAfterEvent := nil;

IWModalWindow1.Close;

FreeAndNilList(IWRegion4);

end;

end;

end;

ソース 10

ソース 11

3-5.ローディング画面の組み込み

3-3で作成した画面の検索ボタンのOnAsyncClick処理、更

新ボタンのOnAsyncClick処理のそれぞれで、3-4で作成し

たローディング画面表示用の共通関数を呼び出す【ソース

10～11】。また、検索ボタンの押下時に商品マスタデータを

図 13 CSS：文字の中央揃えの設定CSS：文字の中央揃えの設定

038 MIGARO Technical Report

画面にセットする処理、更新ボタン押下時に商品マスタを更

新する処理を作成する。詳細なソースについてはここでは割

愛するが、3-2で配置したTFDQueryを使用し、SQL文を発

行して各処理を実行する。

3-6.CSSの組み込み

次に、CSSの定義について説明する。

(1)ローディング中の文字の中央揃え

・CSSファイルに【図13】のように記述する。また、3-4のロー

ディング画面のスピナー用TIWLabelのCssプロパティに先

ほど記述したセレクタ「center_hor center_ver」を指定す

る。今回のように複数指定する場合は、セレクタ間を半角ス

ペースで繋ぐ。

検索ボタンのOnAsyncClick 処理

更新ボタンのOnAsyncClick 処理

procedure TIWForm3.IWButton1AsyncClick(Sender: TObject;

EventParams: TStringList);

var

sLoadingStr: String;

begin

sLoadingStr := '検索中です。
しばらくお待ちください。';

ShowLoadingFra(IWButton1Click, sLoadingStr);

end;

procedure TIWForm3.IWButton2AsyncClick(Sender: TObject;

EventParams: TStringList);

var

sLoadingStr: String;

begin

sLoadingStr := '更新中です。
しばらくお待ちください。';

ShowLoadingFra(IWButton2Click, sLoadingStr);

end;

図 15 実行結果①：検索ボタン押下前実行結果①：検索ボタン押下前

図 16 実行結果②：検索ボタン押下時実行結果②：検索ボタン押下時

図 17 実行結果③：検索ボタン押下後実行結果③：検索ボタン押下後

図 14 CSS：スピナーのアニメーション表示CSS：スピナーのアニメーション表示

MIGARO Technical Report 039

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

(2)ローディング・スピナーのアニメーション

・CSSファイルに【図14】のように記述する。また、3-4のロ

ーディング画面のスピナーのアニメーション表示用

TIWLabelのCssプロパティに先ほど記述したセレクタ

「spinner」を指定する。

以上で、処理中にローディング画面を表示するプログラム

は完成である。上記プログラムを実行し、検索ボタン押下

時処理の結果を確認する。ボタン押下時に指定した文言

のローディング画面が表示され、検索処理完了後はロー

ディング画面が終了していることが確認できる【図15～

17】。

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

図 18 標準のIWGrid（開発画面）標準のIWGrid（開発画面）

図 19 標準のIWGrid（実行画面）標準のIWGrid（実行画面）

図 20 フレームを用いた場合の開発画面フレームを用いた場合の開発画面

040 MIGARO Technical Report

4. フレームを使用した明細グリッド

本章では、明細をフレーム形式で作成・使用する方法を紹介

する。

4-1.フレームを使用する利点

IntrawebにはTIWGridという明細形式でデータを表示で

きるコンポーネントが存在する。TIWGridは、タイトルや項

目間の幅など、実際にプログラムを実行するまで、その内容

を確認することができず、少々扱い辛い印象を受ける【図

18】。TIWGridでは、タイトルや幅など明細のビジュアルを

統合開発画面上で確認することができないため、実行してビ

ジュアルを確認する必要があり、レイアウト調整に時間がか

かる【図19】。

今回紹介する明細のフレームでは、統合開発画面上でビジ

ュアルを確認しながら、レイアウトを調整することができる

ため、効率よく開発することができる【図20】。

そこで次節より、商品一覧照会を想定し、フレームを利用し

た明細形式のプログラム作成例を紹介する。

ソース 12

ソース 13

図 21 明細フレームの構成明細フレームの構成

MIGARO Technical Report 041

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

4-2.今回作成する画面について

今回作成するプログラムのコンポーネントの配置は【図

20】の通りである。明細フレームの親として使用する

IWRegion8を明細部に配置している。

4-3.明細フレームの作成

(1)コンポーネントの配置

　・【図21】の通りにコンポーネントを配置する。

(2)明細フレームのプロパティ宣言

・明細フレームには明細項目をそれぞれプロパティとし

　 て宣言する【ソース12】。

(3)「GET項目名」メソッド

・各プロパティごとに、該当項目のLabelのCaptionを返

却する処理を記述する【ソース13】。

商品マスタについては、第3章と同様の商品マスタ

（SHOHINM）を使用する。

プロパティの宣言部

「GET項目名」メソッド

property SEQ : Integer read GetSEQ write SetSEQ; // SEQ

property SHCD: String read GetSHCD write SetSHCD; // 商品コード
property SHNM: String read GetSHNM write SetSHNM; // 商品名

property SRNM: String read GetSRNM write SetSRNM; // 商品略称

property GetSRKN write SetSRKN; // 仕入価格
property

SRKN: Currency read
JURY: Currency read GetJURY write SetJURY; // 重量

Integer;function TIWFrame2.GetSEQ:
begin
Result := StrToIntDef(IWLabel1.Caption, 0);

end;
データ表⽰⽤Labelの値を
受け取る

ソース 14

以上で、明細フレームの準備は完了である。

ソース 15

042 MIGARO Technical Report

4-4.メイン画面の作成

検索ボタン押下時、第3章と同様の方法でIBMiへ接続し、

SQLを発行して画面で指定の条件で商品マスタのデータを

取得する。取得したデータはTFDMemTableへ転送する

【ソース15】。

(4)「SET項目名」メソッド

　・各プロパティごとに、該当項目のLabelのCaptionにプ

　 ロパティ値をセットする処理を記述する【ソース14】。

「Set 項目名」メソッド

データの取得処理

procedure TIWFrame2.SetSEQ(const Value: Integer);
begin
IWLabel1.Caption := IntToStr(Value);

end;
受け取った値をデータ表⽰⽤
Labelにセットする

// 商品マスタを参照

qrySELECT.Close;
qrySELECT.SQL.Clear;

qrySELECT.SQL.Text := ' SELECT SHSHCD, SHSHNM, SHSRNM, SHSRKN, SHJURY '

+ ' FROM SHOHINM ';

// 商品名
if (IWEdit1.Text <> '') then

begin

qrySELECT.SQL.Text := qrySELECT.SQL.Text
qrySELECT.ParamByName('SHSHNM').AsString

+ ' WHERE SHSHNM LIKE :SHSHNM ';
:= '%' + IWEdit1.Text + '%';

end;

// データ取得

qrySELECT.Open;

try
// 取得したデータをTFDMemTableへ転送

FDMemTable1.Close;

FDMemTable1.AppendData(qrySELECT, False);
finally

qrySELECT.Close;

end;

取得したデータを
TFDMemTableへ
転送

ソース 16

ソース 17

MIGARO Technical Report 043

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

メイン画面では、次のような処理を記述する。

(1)明細の初期化

・明細フレームを解放するための共通関数【ソース16】

を作成し、明細作成時の処理の先頭で実行し、明細フ

レームの初期化を行う。

(2)明細作成処理

・TFDMemTableのレコードの数だけ明細フレームを

　 生成する処理を記述する。

　・レコード1行を1つのフレームに設定する。

(3)明細フレームのプロパティ設定

・取得したデータを4-3で宣言したフレームのプロパテ

　 ィにセットする【ソース17】。

FreeAndNilList 関数の内容

FreeAndNilList 関数の内容

procedure TIWForm4.FreeAndNilList(ARegion: TIWRegion);
var
i, iCnt: Integer;
fraList: TFrame;

begin
// コンポーネントの数を内部保持

iCnt := ARegion.ComponentCount;

// コンポーネントの数分、処理を行う

for i := iCnt - 1 downto 0 do
begin

if (ARegion.Components[i] is TFrame) then
begin

fraList := TFrame(ARegion.Components[i]);

FreeAndNil(fraList);
end;

end;
end;

指定したTIWRegion上に
あるフレームを全て解放する

procedure TIWForm4.SetList;
var
i: Integer;

Frame2: TIWFrame2;
begin
// 明細破棄・変数初期化

FreeAndNilList(IWRegion8);
FFraCnt := 0;

Frame2 := nil;

// 明細作成

FDMemTable1.First;
for i := 1 to FDMemTable1.RecordCount do

begin

Frame2 := TIWFrame2.Create(IWRegion8);
with Frame2 do

begin
// Nameが重複するとエラーになるため、重複しないよう連番を与える

Name := 'Frame2_' + IntToStr(i);
Align := alTop;
Parent := IWRegion8;

図 22 検索ボタン実行後検索ボタン実行後

044 MIGARO Technical Report

(4)明細背景色の設定

・明細が見やすくするように奇数行は背景を白色、偶数行

　 は背景を黄色に設定した。

以上で、フレームを利用した明細形式のプログラムは完成で

ある。

4-5.プログラムの実行

上記プログラムを実行し、検索ボタン押下時処理の結果を

確認する。ボタン押下時に商品マスタのデータが明細フレー

ムに表示されることが確認できる【図22】。

(5)明細の高さを設定

・明細フレームを生成したTIWRegionの高さを設定する。

// ＜明細データのセット＞

// フレームに定義しているプロパティに値をセットする

SEQ := i; // 明細連番
SHCD := FDMemTable1.FieldByName('SHSHCD').AsString;

SHNM := FDMemTable1.FieldByName('SHSHNM').AsString;
SRNM := FDMemTable1.FieldByName('SHSRNM').AsString;

// 商品コード

// 商品名
// 商品略称

SRKN := FDMemTable1.FieldByName('SHSRKN').AsInteger; // 仕入価格

JURY := FDMemTable1.FieldByName('SHJURY').AsInteger; // 重量
// 色をセット

case (i mod 2) of
1: IWFrameRegion.Color
else IWFrameRegion.Color

:= clWebWhite; // 奇数行：白

:= $00A4FEF9; // 偶数行：黄

end;
end;

// 次レコードへ

Inc(FFraCnt);
FDMemTable1.Next;

end;

// 明細の高さを設定

if (Frame2 <> nil) then
begin
IWRegion8.Height := Frame2.Height * FFraCnt;

end;
end;

フレームを明細レコー
ド数分⽣成。
同時に設定及び
データをセットする

MIGARO Technical Report 045

D
elphi/400
佐
 田
 雄
 一

D
elphi/400
前
 坂
 誠
 二

Sm
artPad4i

國
 元
 祐
 二

Valence
尾
 崎
 浩
 司

D
elphi/400
田 村 洋 一 郎　宮 坂 優 大　都 地 奈 津 美

本章では、商品一覧照会機能をフレームを利用して作成し

てきた。明細をフレーム形式で作成することで、設計画面

で明細の高さや幅、色などを自由に設定することができ

5.さいごに

本稿では、ユーザーが直感的に操作することができるよ

う、システム開発チームが実際の開発時に工夫し、実装し

たユーザーインターフェース機能を紹介した。今回紹介し

た内容を参考に、必要な機能を追加するなど各自に合っ

たものにカスタマイズして頂くことも可能である。本稿を

https://www.migaro.co.jp/d4sample/2024report_intraweb.zip

(※ダウンロードには、Delphi/400メンテナンスページへのログインユーザー・パスワードが必要)

参考に、アプリケーション開発に役立てて頂ければ幸いで

ある。

なお、今回紹介したプログラムのソース一式を以下よりダ

ウンロード可能なので、是非活用して頂きたい。

る。似たような画面を展開する場合、フレームを利用する

ことで、記述するロジックを削減する事ができ、開発工数

を短縮する事が可能である。

	A4 - 210×297(026p)
	A4 - 210×297(027p)
	A4 - 210×297(028p)
	A4 - 210×297(029p)
	A4 - 210×297(030p)
	名称未設定

	A4 - 210×297(031p)
	A4 - 210×297(032p)
	A4 - 210×297(033p)
	A4 - 210×297(034p)
	A4 - 210×297(035p)
	A4 - 210×297(036p)
	A4 - 210×297(037p)
	A4 - 210×297(038p)
	A4 - 210×297(039p)
	A4 - 210×297(040p)
	A4 - 210×297(041p)
	A4 - 210×297(042p)
	A4 - 210×297(043p)
	A4 - 210×297(044p)
	A4 - 210×297(045p)

