
1.はじめに

一覧形式でデータを照会する場合、グリッド形式のレイアウ

トがよく使用される。Delphi/400のVCLアプリケーション

では、TDBGridやTStringGridのコンポーネントを使用して

容易にグリッド形式の照会画面が作成可能である。

Delphi/400で作成したVCLアプリケーションは、PCだけで

なくWindowsタブレットでも実行可能である。PCとタブレ

ットで同一のアプリケーションが利用可能であることは

Delphi/400アプリケーションの魅力のひとつである。しか

し利用端末が異なるということは、利用するシーンや目的が

2.作成する照会画面イメージ

まずは、本稿で作成するサンプルについて解説する。本稿で

は、商品を点検して状態を保存するという場面をイメージ

し、【図１】のような一覧画面を利用していると想定する。一

覧画面の明細には、チェックボックスやリストボックス、カメ

ラ起動の為のボタンを配置している。【図１】に対して、本稿

の内容を実装した完成イメージは【図２】とする。

尚、本稿で紹介する内容はDelphi/400 11Alexandriaを使

用し、フレームワークはFireMonkeyで作成する。

046   MIGARO Technical Report

異なることが多い。本稿のテーマであるタブレットの場合

は、屋外で使用することが多く、別作業をしながら片手で操

作するなどの場面が想定される。特に一覧形式の画面では、

文字が細かくなりやすいため、より視認性や使い勝手のよさ

について考慮する必要がある。

そこで本稿では、一覧形式の画面に注目し、Windowsタブ

レットでの利用に特化したアプリケーションの作成方法に

ついて紹介する。

Windowsタブレット向けカスタムグリッドの
作成方法

1. はじめに
2. 作成する照会画面イメージ
3. コンポーネントの配置
4. 明細表示処理の実装
5. チェックボックスの実装
6. ボタンの実装
7. リストボックスの実装
8. おわりに

Delphi/400

株式会社ミガロ.
システム事業部 2課
前坂　誠二

略　歴

生年月日：1989年3月21日
最終学歴：2011年　関西大学　文学部卒業
入社年月：2011年04月　株式会社ミガロ．入社
社内経歴：2011年04月　システム事業部配属

現在の仕事内容：

Delphi/400を利用したシステム開発や保守作業を
担当。Delphi、Delphi/400の開発経験を積みなが
ら、日々スキルを磨いている。



図 1 点検商品照会画面（変更前）点検商品照会画面（変更前）

図 2 点検商品照会画面（変更後）点検商品照会画面（変更後）

MIGARO Technical Report   047

3.コンポーネントの配置

まずはコンポーネントの配置について説明する。本稿では

グリッドをメインテーマとして扱うためグリッド部分以外に

ついては説明を割愛する。

FireMonkeyは特徴として、コンポーネントに親子関係を

持たせることができる。この特徴を活かし、コンポーネント

の配置を行う。

 明細タイトルは、列全体の色をコントロールするため、まず

はTRectangleを配置し、子として各列用のTRectangle＋

TLabelを配置する【図３】。

D
elphi/400
佐
 田
  雄
 一
 

D
elphi/400
前
 坂
  誠
 二

Sm
artPad4i

國
 元
  祐
 二

Valence
尾
 崎
  浩
 司

D
elphi/400
田 村  洋 一 郎　宮 坂  優 大　都 地  奈 津 美



図 4 コンポーネント配置（明細グリッド）コンポーネント配置（明細グリッド）

図 3 コンポーネント配置（明細タイトル）コンポーネント配置（明細タイトル）

データ内容を表示するためのコンポーネントは、

TVertScrollBox→TRectangleコンポーネントを親子関係

で配置する。TVertScrollBoxは、明細のスクロール可能にさ

せるために配置し(vsbGrid)、TRectangleは描画によるデ

ータ表示を行うために配置する(rctGrid)。

この際、rctGridは[Fill]プロパティのKindをNoneとし、デ

048   MIGARO Technical Report

フォルトの塗りつぶしを無しにする。[Align]はスクロール表

示を行うため、Topの値に設定する。また、vsbGridのTouch

プロパティにて[InteractiveGestures]の[Pan]をTrueに

する。本プロパティをTrueにすることにより、タブレットで操

作した際に指のスライドでのスクロールが可能となる

【図４】。



ソース 1

ソース 2

4.明細表示処理の実装

4-1.データ取得処理

まずは、データ取得処理の準備として今回実装に必要な変

数・定数を定義する【ソース１】。

次に、btnSearchのOnClickイベントにて、TFDQueryで

データ取得→配列に保持する【ソース２】。その後、選択行

を先頭にし、rctGridのHeightを行数×行の高さで設定し

ている。

尚、本稿のサンプルでは【図５】のテーブルよりデータを取

得する。

MIGARO Technical Report   049

D
elphi/400
佐
 田
  雄
 一
 

D
elphi/400
前
 坂
  誠
 二

Sm
artPad4i

國
 元
  祐
 二

Valence
尾
 崎
  浩
 司

D
elphi/400
田 村  洋 一 郎　宮 坂  優 大　都 地  奈 津 美

変数定義

データ取得処理

type

  // 明細データ
  TListData = record

   // チェック

    // 商品CD
    // 商品名

    CHEK: Boolean;
    SHCD: String;
    SHNM: String;
    JYTI: String;    // 状態
  end;

  TfrmRefer = class(TForm)
・
・
・

  private
    { private 宣言 }

    FListData: array of TListData; // 明細データの配列
    FSelectedRow: Integer; // 選択行保持

  public

    { public 宣言 }
  end;

・

・
・

const

 cRowHeight = 55; // １明細の高さ

明細データ

内部保持⽤変数

定数

{*******************************************************************************

 目的: 検索ボタン押下時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.btnSearchClick(Sender: TObject);
var
  iCnt: Integer;
begin

  // データ取得
  qryTemp.Close;
  qryTemp.SQL.Text :=
    ' SELECT * FROM TRTKSJ ';

  qryTemp.Open;
  try



図 5 データ取得用テーブルデータ取得用テーブル

050   MIGARO Technical Report

4-2.描画処理

4-1で配列に保持しているデータをループ処理にて順次描画

する。処理はrctGridのOnPainting処理にて記述する【ソー

ス３】。

    qryTemp.First;
    while not qryTemp.Eof do
    begin

// 配列へセット

SetLength(FListData, Length(FListData) + 1);
iCnt := Length(FListData) - 1;

FListData[iCnt].SHCD  := qryTemp.FieldByName('TSSHCD').AsString; // 商品コード

FListData[iCnt].SHNM  := qryTemp.FieldByName('TSSHNM').AsString; // 商品名

qryTemp.Next;
    end;
  finally

    qryTemp.Close;
  end;

  // 選択行をセット ※0始まり
  FSelectedRow := 0;

  // スクロールを先頭位置にする
  vsbGrid.ScrollBy(0, Length(FListData) * cRowHeight);

  // rctGridの大きさを設定

  rctGrid.Height := Length(FListData) * cRowHeight;

  // 再描画

  rctGrid.Repaint;
end;



ソース 3

MIGARO Technical Report   051

D
elphi/400
佐
 田
  雄
 一
 

D
elphi/400
前
 坂
  誠
 二

Sm
artPad4i

國
 元
  祐
 二

Valence
尾
 崎
  浩
 司

D
elphi/400
田 村  洋 一 郎　宮 坂  優 大　都 地  奈 津 美

描画処理（行の枠、テキスト描画）
{*******************************************************************************

 目的: 描画処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridPainting(Sender: TObject; Canvas: TCanvas;
  const ARect: TRectF);
var

  brsTemp: TBrush;
  rRowArea, rText: TRectF;
  iData, iStartRow, iEndRow: Integer;
  bBtnColor: TBrush;
begin

  // 現在のスクロール位置より表示開始行を計算

  iStartRow := Trunc(vsbGrid.ViewportPosition.Y / cRowHeight);
  if iStartRow < 0 then

iStartRow := 0;

  // 現在のスクロール位置より表示最終行を計算

  iEndRow := Trunc(vsbGrid.ViewportPosition.Y / cRowHeight)
+ Trunc(vsbGrid.Height / cRowHeight);

  for iData := iStartRow to iEndRow do

  begin

    if Length(FListData) - 1 < iData then
Exit;

    // 行の枠を描画 Str ----------------------------------------------

    rRowArea := ARect;
    rRowArea.Left   := 1;
    rRowArea.Right  := rctGrid.Width;
    rRowArea.Top    := iData * cRowHeight + 1;
    rRowArea.Bottom := (iData + 1) * cRowHeight;

    brsTemp := TBrush.Create(TBrushKind.Solid, TAlphaColorRec.White);

    if FSelectedRow = iData then
brsTemp.Color := TAlphaColor($FFFFDC20) // 選択行

    else if ((iData mod 2) = 0) then

brsTemp.Color := TAlphaColor($FFEAF2FC) // 偶数行
    else    

brsTemp.Color := TAlphaColorRec.White;  // 奇数行

    Canvas.FillRect(
rRowArea,
0, 0,
[],
1,

brsTemp);

     // 描画対象範囲
// XRadius、YRadius：角の曲がり具合  0…四角

// Radiusを適用する角
// Opacity：透明度

     // 色

    // 行の枠を描画 End ----------------------------------------------

    // テキスト描画 Str ----------------------------------------------
    Canvas.Fill.Color := TAlphaColorRec.Black;

    Canvas.Font.Size := 19;

    // 商品コード

    rText := rRowArea;
    rText.Top := rText.Top + 3;

    rText.Left  := rctSHCD.Position.X;
    rText.Right := rctSHCD.Position.X + rctSHCD.Size.Width;
    Canvas.FillText(

rText, // 描画対象範囲
FListData[iData].SHCD,  // 値

True,
1,
[],
TTextAlign.Leading,     
TTextAlign.Center);     

// WordWrap：True - 改行あり

// Opacity：透明度
// テキストを読む方向 ※ヘルプにて値なしを推奨

// 水平方向の配置  Leading：左揃え
// 垂直方向の配置  Center ：中央

①

②

③



ソース 4

052   MIGARO Technical Report

4-3.明細タップ処理

本章のタップ処理では、タップ時に選択行の色の変更を行

う。色の指定については4-2の処理で実装済みであるため

rctGridのOnMouseDownイベントにてFSelectedRowの

変数値を変更し、再描画を行うだけで実装可能である

【ソース４】。

処理の流れとしては以下の通りである。

①現在表示しているスクロール位置より

画面に表示する開始行と終了行を計算する

②各明細データ単位に行の区切り枠を描画する

③明細の値を描画する

本稿で実装している描画処理では、まずTRectF型の変数を

定義し、Left、Right、Top、Bottomの値を指定して、描画の

対象範囲を定める。その後、各々の描画処理を実装している。

行の区切り枠では、rRowArea変数に描画範囲をセットした

後、選択行、偶数行、奇数行による色の指定を行い、

Canvas.FillRect処理で描画を実施している。

明細の値では、rText変数に明細タイトルの位置と幅に合わ

せて描画範囲をセットした後、FillText処理で値を表示して

いる。列の幅を大きくしたいときや位置を変更したい場合は、

明細タイトルの幅や位置を変更するだけで、明細の描画も付

随して変更されるという仕組みである。

明細タップ処理（選択行の変更）

    // テキスト描画 End ----------------------------------------------

  end;
end;

商品名も商品コードと同⼿順で描画

{*******************************************************************************

 目的: 明細タップ時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridMouseDown(Sender: TObject; Button: TMouseButton;
  Shift: TShiftState; X, Y: Single);
begin

  // タップ位置(Y座標)から選択行を計算

  FSelectedRow := Trunc(Y) div cRowHeight;

  // 再描画
  rctGrid.Repaint;
end;



ソース 5

ソース 6

MIGARO Technical Report   053

4-4.スクロールバーの自動表示切替え

スクロールバーは明細をスライドしたタイミングだけ表示

させるように実装する。ロジックとしては画面生成時処理

に１行追加するだけで実装可能である【ソース５】。

D
elphi/400
佐
 田
  雄
 一
 

D
elphi/400
前
 坂
  誠
 二

Sm
artPad4i

國
 元
  祐
 二

Valence
尾
 崎
  浩
 司

D
elphi/400
田 村  洋 一 郎　宮 坂  優 大　都 地  奈 津 美

5.チェックボックスの実装

5-1.描画処理

本稿でのチェックボックスは、チェックONの場合は黒丸で

塗りつぶし、チェックマークが表示される見た目で作成す

る。rctGridのOnPaintingに処理を追加する【ソース６】。

スクロールの自動表示設定

描画処理（チェックボックス）

{*******************************************************************************

 目的: 画面生成時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.FormCreate(Sender: TObject);
begin
  // スクロールの自動表示

  vsbGrid.AniCalculations.AutoShowing := True;
end;

{*******************************************************************************

 目的: 描画処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridPainting(Sender: TObject; Canvas: TCanvas;
  const ARect: TRectF);
var

  brsTemp: TBrush;
  rRowArea, rText: TRectF;
  rCheck: TRectF;
  iData, iStartRow, iEndRow: Integer;
  pDrawPoint1, pDrawPoint2: TPointF;
begin

  for iData := iStartRow to iEndRow do

  begin

    if Length(FListData) - 1 < iData then
Exit;

⾏の枠、テキスト描画【ソース3】

表⽰開始⾏、終了⾏計算【ソース3】



054   MIGARO Technical Report

    // チェックボックス描画 Str --------------------------------------
    // チェックの外側描画

    rCheck := rRowArea;
    rCheck.Left   := rctCHEK.Position.X + rctCHEK.Width / 4; // Left  ：開始位置

// Right ：幅

// Top   ：開始位置
// Bottom：高さ

    rCheck.Right  := rCheck.Left + 32;
    rCheck.Top    := rRowArea.Top + 11;
    rCheck.Bottom := rRowArea.Bottom - 11;

    // 描画する線の設定値

    Canvas.Stroke.Kind  := TBrushKind.Solid;
    Canvas.Stroke.Color := TAlphaColorRec.Black;
    Canvas.Stroke.Thickness  := 0.5;
    Canvas.DrawRect(

rCheck,

16, 16,
AllCorners,
1,
TCornerType.Round);

// 描画対象範囲

// Radius：横半径、縦半径

// Radiusを適用する角
// Opacity：透明度

   // 角の種類

    // チェックONの場合

    if FListData[iData].CHEK then
    begin

// チェックの中身描画
Canvas.Fill.Color := TAlphaColorRec.Black;

Canvas.FillArc(
PointF(
rCheck.Left + 16,                       // 円の中心位置：X

Trunc(cRowHeight / 2) + rRowArea.Top),  // 円の中心位置：Y
PointF(16, 16),

0, 360,
1);

// Radius：横半径、縦半径

// 塗りつぶし角度

// Opacity：透明度

// 始点のX

// 始点のY

// 終点のX
// 終点のY

// チェック線左
pDrawPoint1.X := rCheck.Left + 6;

pDrawPoint1.Y := rCheck.Top  + 9;
pDrawPoint2.X := pDrawPoint1.X + 7;
pDrawPoint2.Y := pDrawPoint1.Y + 16;
Canvas.Stroke.Thickness  := 3.5; // 線の太さ
Canvas.Stroke.Color := TAlphaColorRec.White;  // 線の色

Canvas.DrawLine(pDrawPoint1, pDrawPoint2, 1);

// チェック線右

// 始点のX
// 始点のY

// 終点のX

// 終点のY

pDrawPoint1.X := pDrawPoint2.X;
pDrawPoint1.Y := pDrawPoint2.Y;

pDrawPoint2.X := rCheck.Left + 32;
pDrawPoint2.Y := rCheck.Top + 2;
Canvas.Stroke.Thickness  := 3.5; // 線の太さ

Canvas.Stroke.Color := TAlphaColorRec.White;  // 線の色
Canvas.DrawLine(pDrawPoint1, pDrawPoint2, 1);

// 値を元に戻す
Canvas.Stroke.Color := TAlphaColorRec.Black;
Canvas.Stroke.Thickness  := 1;

    end;

    // チェックボックス描画 End --------------------------------------

  end;
end;

①

②

③



ソース 7

MIGARO Technical Report   055

処理の流れとしては以下の通りである。

①外側の円を描画する

②チェックONの場合に、黒丸で塗りつぶしを行う

③チェックONの場合に、チェックマークを描画する

①の処理では、前章での描画処理と同様に、まずは描画対

象範囲を指定する。その後DrawRect処理により描画処理

を実施する。円の描画は、XRadius、YRadiusの引数値で

どれくらいの大きさの円を描くかを決定する。XRadius、

YRadiusの値が円の縦と横の半径にあたるため、設定し

た値に対して、Rectの値についても調整する必要がある。

例えば、本サンプルの場合は各Radiusを16と設定してい

るため、RectのLeft-Right間、Top-Bottom間は32とな

らなければ、いびつな円として描画される。

②、③の処理はチェックONとした場合に実施する。②

の黒丸での塗りつぶしはFillArc処理によって行う。こちら

はDrawRect処理とは異なり、Rectの指定は不要である

が描画したい円の中心を起点に、塗りつぶし範囲を指定す

る必要がある。本サンプルでは、外側の円と同一の大きさ

で塗りつぶしを行っている。③のチェックマークの描画は、

2本の線を組み合わせて実装している。それぞれ線の始点

と終点、線の太さと色を設定した後、DrawLine処理によ

り、線を描画している。

D
elphi/400
佐
 田
  雄
 一
 

D
elphi/400
前
 坂
  誠
 二

Sm
artPad4i

國
 元
  祐
 二

Valence
尾
 崎
  浩
 司

D
elphi/400
田 村  洋 一 郎　宮 坂  優 大　都 地  奈 津 美

5-2.明細タップ処理

明細タップ時に、チェックボックスのONとOFFを切り替え

る処理を実装する。

タップしたポイントのX座標が”確認”列の範囲内であれ

ば、配列の値を切り替える処理を追加するだけで実装完了

である【ソース７】。

明細タップ処理（チェックボックス処理）

{*******************************************************************************

 目的: 明細タップ時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridMouseDown(Sender: TObject; Button: TMouseButton;
  Shift: TShiftState; X, Y: Single);
begin

  // タップ位置(Y座標)から選択行を計算

  FSelectedRow := Trunc(Y) div cRowHeight;

  // チェックボックスタップ処理 Str --------------------------------------
  if (Trunc(X) >= rctCHEK.Position.X)                   and

     (Trunc(X) <= (rctCHEK.Position.X + rctCHEK.Width)) then

  begin
    FListData[FSelectedRow].CHEK := not (FListData[FSelectedRow].CHEK);
  end;
  // チェックボックスタップ処理 End --------------------------------------

  // 再描画
  rctGrid.Repaint;
end;

処理追加



ソース 8

056   MIGARO Technical Report

6.ボタンの実装

6-1.描画処理

“カメラ”列のボタンの描画を行う。ボタン内のテキストには

“撮影”の文言を設定する。rctGridのOnPaintingに処理を

追加する【ソース8】。

描画処理（ボタン）

{*******************************************************************************

 目的: 描画処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridPainting(Sender: TObject; Canvas: TCanvas;
  const ARect: TRectF);
var

  brsTemp: TBrush;
  rRowArea, rText: TRectF;
  rCheck: TRectF;
  rBtn: TRectF;
  iData, iStartRow, iEndRow: Integer;

  pDrawPoint1, pDrawPoint2: TPointF;
  bBtnColor: TBrush;
begin

  for iData := iStartRow to iEndRow do

  begin
    if Length(FListData) - 1 < iData then

Exit;

    // ボタン描画 Str ------------------------------------------------

    rBtn := rRowArea;
    rBtn.Left   := rctCamera.Position.X;
    rBtn.Right  := rctCamera.Position.X + rctCamera.Size.Width;
    rBtn.Top    := rBtn.Top + 6;
    rBtn.Bottom := rBtn.Bottom - 6;

    // ボタン色
    bBtnColor := TBrush.Create(TBrushKind.Solid, TAlphaColor($FFE0E0E0));

    // ボタン描画

    Canvas.FillRect(
rBtn,
5, 5,
AllCorners,
1,

bBtnColor);

// 描画対象範囲
// XRadius、YRadius：角の曲がり具合  0…四角

// Radiusを適用する角
// Opacity：透明度

// 色

    // ボタン枠描画

    Canvas.Stroke.Kind  := TBrushKind.Solid;
    Canvas.Stroke.Color := TAlphaColorRec.Gray;

    Canvas.DrawRect(
rBtn,
5, 5,
AllCorners,
1,

// 描画対象範囲
// XRadius、YRadius：角の曲がり具合  0…四角

// Radiusを適用する角
// Opacity：透明度

TCornerType.Round); // 種類

表⽰開始⾏、終了⾏計算【ソース3】

⾏の枠、テキスト描画【ソース3】

チェックボックス描画【ソース6】

①

②



ソース 9

処理の流れとしては以下の通りである。

①指定範囲でボタンの形で塗りつぶしを行う

②ボタンの枠を描画する

③ボタンに表示する文言を描画する

①の処理では、前章での描画処理と同様に、まずは描画対

象範囲を指定する。その後、FillRect処理にてボタンの形

に描画する。本サンプルでは、少し丸みを帯びた形で描画

するため、XRadiusとYRadiusの値を5で指定している。例

MIGARO Technical Report   057

えば、各Radiusの値を0で指定した場合は四角の形のボ

タンとなる。

②の処理では、FillRect処理で①で作成したボタンの枠を

描画している。

③の処理では、FillText処理で描画したボタン上に文字を

セットしている。文字の描画については、第４章と同様の手

順である。

6-2.明細タップ処理

明細タップ時に、”撮影”ボタン押下時の処理を実装する。

タップしたポイントのX座標が”カメラ”列の範囲内であれ

ば、カメラ起動を行う【ソース９】。本サンプルでは、カメラ

起動の処理を実装しているが、TButtonのOnClickイベン

トをイメージいただき、各々の処理を実装すればよい。

D
elphi/400
佐
 田
  雄
 一
 

D
elphi/400
前
 坂
  誠
 二

Sm
artPad4i

國
 元
  祐
 二

Valence
尾
 崎
  浩
 司

D
elphi/400
田 村  洋 一 郎　宮 坂  優 大　都 地  奈 津 美

明細タップ処理（ボタン処理）

    // 文字描画

    Canvas.Fill.Color := TAlphaColorRec.Black;
    Canvas.FillText(rBtn, '撮 影', True, 1, [], TTextAlign.Center, TTextAlign.Center);

    // ボタン描画 End ------------------------------------------------

  end;
end;

③

{*******************************************************************************

 目的: 明細タップ時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridMouseDown(Sender: TObject; Button: TMouseButton;
  Shift: TShiftState; X, Y: Single);
begin

  // タップ位置(Y座標)から選択行を計算

  FSelectedRow := Trunc(Y) div cRowHeight;

  // カメラボタンタップ処理 Str ------------------------------------------

  if (Trunc(X) >= rctCamera.Position.X)                     and
     (Trunc(X) <= (rctCamera.Position.X + rctCamera.Width)) then

  begin
    // *** カメラ起動 *** //

    ShellExecute(0, 'OPEN', PChar('microsoft.windows.camera:'), nil, nil, SW_SHOWMAXIMIZED);
  end;
  // カメラボタンタップ処理 End ------------------------------------------

  // 再描画

  rctGrid.Repaint;
end;

チェックボックスタップ処理【ソース7】



ソース 10

058   MIGARO Technical Report

7.リストボックスの実装

7-1.描画処理

“状態”列のリストボックスの描画を行う。リストボックスは

ボタンの描画実施後に下向きの三角マークを描画して表示

している【ソース１０】。

描画処理（リストボックス）
{*******************************************************************************

 目的: 描画処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridPainting(Sender: TObject; Canvas: TCanvas;
  const ARect: TRectF);
var

  brsTemp: TBrush;
  rRowArea, rText: TRectF;
  rCheck: TRectF;
  rBtn: TRectF;
  iData, iStartRow, iEndRow: Integer;

  pDrawPoint1, pDrawPoint2: TPointF;
  bBtnColor: TBrush;
  TempPoints: TPolygon;
begin

  for iData := iStartRow to iEndRow do
  begin

    if Length(FListData) - 1 < iData then

   // リストボックス描画 Str ----------------------------------------
    rBtn := rRowArea;
    rBtn.Left   := rctJYTI.Position.X;
    rBtn.Right  := rctJYTI.Position.X + rctJYTI.Size.Width;

    rBtn.Top    := rBtn.Top + 6;
    rBtn.Bottom := rBtn.Bottom - 6;

    // ボタン色
    bBtnColor := TBrush.Create(TBrushKind.Solid, TAlphaColor($FFE0E0E0));

    // ボタン描画
    Canvas.FillRect(

rBtn,
5, 5,

AllCorners,
1,
bBtnColor);

// 描画対象範囲
// XRadius、YRadius：角の曲がり具合  0…四角

// Radiusを適用する角

// Opacity：透明度
// 色

    // ボタン枠描画

    Canvas.Stroke.Kind  := TBrushKind.Solid;
    Canvas.Stroke.Color := TAlphaColorRec.Gray;
    Canvas.DrawRect(

rBtn,
5, 5,

AllCorners,
1,

// 描画対象範囲
// XRadius、YRadius：角の曲がり具合  0…四角

// Radiusを適用する角

// Opacity：透明度
TCornerType.Round); // 種類

Exit;⾏の枠、テキスト描画【ソース3】

チェックボックス描画【ソース6】

ボタン描画【ソース8】

表⽰開始⾏、終了⾏計算【ソース3】

①



図 6 コンポーネント配置（リスト）コンポーネント配置（リスト）

MIGARO Technical Report   059

処理の流れとしては以下の通りである。

①第６章と同様の手順でボタンを描画する

②下三角(▼)を描画する

③リストボックスに表示する文言を描画する

①と③の処理については、第６章と同様のイメージでボタン

と文言の描画処理を行う。

②の処理では、下三角を描画するためにFillPolygon処理を

実施する。TempPoints変数では三角形を形成するために各

支点を設定している。

下三角は記号文字でも表現可能であるが、実行端末の使用

フォントに依存する可能性がある。しかし、②の処理のように

図形で描画処理を行うと実行端末による影響は受けない。

7-2.コンポーネントの配置

本サンプルでは、明細タップ時に選択リストを表示する。リ

ストの内容表示は別途コンポーネントを配置して実装する

【図６】

D
elphi/400
佐
 田
  雄
 一
 

D
elphi/400
前
 坂
  誠
 二

Sm
artPad4i

國
 元
  祐
 二

Valence
尾
 崎
  浩
 司

D
elphi/400
田 村  洋 一 郎　宮 坂  優 大　都 地  奈 津 美

    // 下三角配置設定

    SetLength(TempPoints, 4);
    TempPoints[0] := PointF(rctJYTI.Position.X + rctJYTI.Size.Width - 22, rBtn.Top    + 14); // 左支点
    TempPoints[1] := PointF(rctJYTI.Position.X + rctJYTI.Size.Width -  4, rBtn.Top    + 14); // 右支点

    TempPoints[2] := PointF(rctJYTI.Position.X + rctJYTI.Size.Width - 13, rBtn.Bottom - 12); // 下支点
    TempPoints[3] := PointF(rctJYTI.Position.X + rctJYTI.Size.Width - 22, rBtn.Top    + 14); // 左支点

    // 下三角描画
    Canvas.Fill.Color := TAlphaColorRec.Black;
    Canvas.FillPolygon(TempPoints, 1); // [0]→[1]→[2]→[3]で支点を結んで▼描画

    // 文字描画

    Canvas.Fill.Color := TAlphaColorRec.Black;
    Canvas.FillText(rBtn, FListData[iData].JYTI, True, 1, [], TTextAlign.Leading, TTextAlign.Center);
    // リストボックス描画 End ----------------------------------------
  end;

end;

②

③



図 7 データ取得用テーブル（リスト取得）データ取得用テーブル（リスト取得）

ソース 11

060   MIGARO Technical Report

7-3.リスト内容の取得

画面生成時に【図７】のテーブルよりデータを取得する。取得

した内容をlvListのItemsに取得内容を追加する【ソース

11】。

リストデータ取得処理

{*******************************************************************************

 目的: 画面生成時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.FormCreate(Sender: TObject);
begin
  // スクロールの自動表示

  vsbGrid.AniCalculations.AutoShowing := True;

  // リスト内容取得

  lvList.Items.Clear;
  lvList.Items.Add.Text := '';

  qryTemp.Close;
  qryTemp.SQL.Text :=
    ' SELECT * FROM MSSHTJ ';
  qryTemp.Open;
  try

    while not qryTemp.Eof do

    begin
lvList.Items.Add.Text :=
qryTemp.FieldByName('STJTNM').AsString;

qryTemp.Next;

    end;
  finally
    qryTemp.Close;
  end;

  // ポップアップ非表示

  poListView.Visible := False;
end;

処理追加



ソース 12

MIGARO Technical Report   061

7-4.リスト表示処理

btnListViewのOnClickイベントにてリスト内容の表示

処理を記述する【ソース１２】。poListViewの表示場所の

ターゲットをbtnListViewとし、ポップアップ表示させる。

また、表示させる向きをbtnListViewの表示位置で決定

する処理を記述している。

D
elphi/400
佐
 田
  雄
 一
 

D
elphi/400
前
 坂
  誠
 二

Sm
artPad4i

國
 元
  祐
 二

Valence
尾
 崎
  浩
 司

D
elphi/400
田 村  洋 一 郎　宮 坂  優 大　都 地  奈 津 美

リスト内容表示処理

{*******************************************************************************

 目的: リスト表示処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.btnListViewClick(Sender: TObject);
var
  sY: Single;
begin

  poListView.PlacementTarget := btnListView;
  poListView.Popup;

  // ボタンのY座標を保持

  sY := btnListView.Position.Y;

  // CalloutPositionの設定

  if TCustomPopupForm(TMyPopupForm(poListView).PopupForm).Top < sY then
  begin

    // ポップアップを上向きに表示

    rctListView.CalloutPosition := TCalloutPosition.Bottom;
    lvList.Margins.Top    := 5;
    lvList.Margins.Bottom := 15;
  end

  else 
  begin
    // ポップアップを下向きに表示

    rctListView.CalloutPosition := TCalloutPosition.Top;
    lvList.Margins.Top    := 15;

    lvList.Margins.Bottom := 5;
  end;
end;



ソース 13

062   MIGARO Technical Report

7-5.明細タップ処理

明細タップ時に、“状態”列のリストボックス押下時の処理を

実装する。タップしたポイントのX座標が“状態”列の範囲内

であれば、リスト表示を行う【ソース１３】。

7-4でリスト表示処理を実装したbtnListViewをタップした

ポイントへ移動させ、btnListViewClickイベントを動作さ

せている。しかしbtnListViewボタンはVisible:=Falseで設

定しており、画面上は表示されない。そのため、ポップアップ

のみがリストボックス上で表示されているように見える仕組

みである。

明細タップ処理(リストボックス)
{*******************************************************************************

 目的: 明細タップ時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridMouseDown(Sender: TObject; Button: TMouseButton;
  Shift: TShiftState; X, Y: Single);
begin

  // タップ位置(Y座標)から選択行を計算

  FSelectedRow := Trunc(Y) div cRowHeight;

  // 状態リストボックスタップ処理 Str ------------------------------------

  if (Trunc(X) >= rctJYTI.Position.X)                   and
     (Trunc(X) <= (rctJYTI.Position.X + rctJYTI.Width)) then

  begin

    btnListView.Position.X := rctJYTI.Position.X + Trunc(rctJYTI.Width / 3);
    btnListView.Position.Y := Y - vsbGrid.ViewportPosition.Y - Trunc(cRowHeight / 2);
    btnListViewClick(nil);
  end;

  // 状態リストボックスタップ処理 End ------------------------------------

  // 再描画

  rctGrid.Repaint;
end;

チェックボックスタップ処理【ソース7】

ボタンタップ処理【ソース9】



MIGARO Technical Report   063

8.おわりに

本稿ではトピックとなる処理を１つずつ分けてご紹介した

ため、難易度が高く感じられたかもしれない。しかし、実際

の総ステップ数としてはわずか500ステップ程度で作成し

ている。さらにフレーム化や共通関数化などを行うと、複数

画面作成したい場合も容易に対応可能である。

また、本稿を活用すると、データ取得ロジックは共通化し、

画面の見た目のみをPCとタブレットで切り替えるといっ

たことも可能である。例えば、データ上でログイン情報と使

用端末を紐づけておけば、ログインによって自動で画面を

切り替えるといったことも実現できる。ぜひ、本稿が画面

設計における課題解決への一助となれば幸いである。

D
elphi/400
佐
 田
  雄
 一
 

D
elphi/400
前
 坂
  誠
 二

Sm
artPad4i

國
 元
  祐
 二

Valence
尾
 崎
  浩
 司

D
elphi/400
田 村  洋 一 郎　宮 坂  優 大　都 地  奈 津 美


	A4 - 210×297(046p)
	A4 - 210×297(047p)
	A4 - 210×297(048p)
	A4 - 210×297(049p)
	A4 - 210×297(050p)
	A4 - 210×297(051p)
	A4 - 210×297(052p)
	A4 - 210×297(053p)
	A4 - 210×297(054p)
	A4 - 210×297(055p)
	A4 - 210×297(056p)
	A4 - 210×297(057p)
	A4 - 210×297(058p)
	A4 - 210×297(059p)
	A4 - 210×297(060p)
	A4 - 210×297(061p)
	A4 - 210×297(062p)
	A4 - 210×297(063p)

