
1.はじめに

一覧形式でデータを照会する場合、グリッド形式のレイアウ

トがよく使用される。Delphi/400のVCLアプリケーション

では、TDBGridやTStringGridのコンポーネントを使用して

容易にグリッド形式の照会画面が作成可能である。

Delphi/400で作成したVCLアプリケーションは、PCだけで

なくWindowsタブレットでも実行可能である。PCとタブレ

ットで同一のアプリケーションが利用可能であることは

Delphi/400アプリケーションの魅力のひとつである。しか

し利用端末が異なるということは、利用するシーンや目的が

2.作成する照会画面イメージ

まずは、本稿で作成するサンプルについて解説する。本稿で

は、商品を点検して状態を保存するという場面をイメージ

し、【図１】のような一覧画面を利用していると想定する。一

覧画面の明細には、チェックボックスやリストボックス、カメ

ラ起動の為のボタンを配置している。【図１】に対して、本稿

の内容を実装した完成イメージは【図２】とする。

尚、本稿で紹介する内容はDelphi/400 11Alexandriaを使

用し、フレームワークはFireMonkeyで作成する。
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異なることが多い。本稿のテーマであるタブレットの場合

は、屋外で使用することが多く、別作業をしながら片手で操

作するなどの場面が想定される。特に一覧形式の画面では、

文字が細かくなりやすいため、より視認性や使い勝手のよさ

について考慮する必要がある。

そこで本稿では、一覧形式の画面に注目し、Windowsタブ

レットでの利用に特化したアプリケーションの作成方法に

ついて紹介する。

Windowsタブレット向けカスタムグリッドの
作成方法

1. はじめに
2. 作成する照会画面イメージ
3. コンポーネントの配置
4. 明細表示処理の実装
5. チェックボックスの実装
6. ボタンの実装
7. リストボックスの実装
8. おわりに

Delphi/400

株式会社ミガロ.
システム事業部 2課
前坂　誠二

略　歴

生年月日：1989年3月21日
最終学歴：2011年　関西大学　文学部卒業
入社年月：2011年04月　株式会社ミガロ．入社
社内経歴：2011年04月　システム事業部配属

現在の仕事内容：

Delphi/400を利用したシステム開発や保守作業を
担当。Delphi、Delphi/400の開発経験を積みなが
ら、日々スキルを磨いている。



図 1 点検商品照会画面（変更前）点検商品照会画面（変更前）

図 2 点検商品照会画面（変更後）点検商品照会画面（変更後）
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3.コンポーネントの配置

まずはコンポーネントの配置について説明する。本稿では

グリッドをメインテーマとして扱うためグリッド部分以外に

ついては説明を割愛する。

FireMonkeyは特徴として、コンポーネントに親子関係を

持たせることができる。この特徴を活かし、コンポーネント

の配置を行う。

 明細タイトルは、列全体の色をコントロールするため、まず

はTRectangleを配置し、子として各列用のTRectangle＋

TLabelを配置する【図３】。
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図 4 コンポーネント配置（明細グリッド）コンポーネント配置（明細グリッド）

図 3 コンポーネント配置（明細タイトル）コンポーネント配置（明細タイトル）

データ内容を表示するためのコンポーネントは、

TVertScrollBox→TRectangleコンポーネントを親子関係

で配置する。TVertScrollBoxは、明細のスクロール可能にさ

せるために配置し(vsbGrid)、TRectangleは描画によるデ

ータ表示を行うために配置する(rctGrid)。

この際、rctGridは[Fill]プロパティのKindをNoneとし、デ
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フォルトの塗りつぶしを無しにする。[Align]はスクロール表

示を行うため、Topの値に設定する。また、vsbGridのTouch

プロパティにて[InteractiveGestures]の[Pan]をTrueに

する。本プロパティをTrueにすることにより、タブレットで操

作した際に指のスライドでのスクロールが可能となる

【図４】。



ソース 1

ソース 2

4.明細表示処理の実装

4-1.データ取得処理

まずは、データ取得処理の準備として今回実装に必要な変

数・定数を定義する【ソース１】。

次に、btnSearchのOnClickイベントにて、TFDQueryで

データ取得→配列に保持する【ソース２】。その後、選択行

を先頭にし、rctGridのHeightを行数×行の高さで設定し

ている。

尚、本稿のサンプルでは【図５】のテーブルよりデータを取

得する。
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変数定義

データ取得処理

type

  // 明細データ
  TListData = record

   // チェック

    // 商品CD
    // 商品名

    CHEK: Boolean;
    SHCD: String;
    SHNM: String;
    JYTI: String;    // 状態
  end;

  TfrmRefer = class(TForm)
・
・
・

  private
    { private 宣言 }

    FListData: array of TListData; // 明細データの配列
    FSelectedRow: Integer; // 選択行保持

  public

    { public 宣言 }
  end;

・

・
・

const

 cRowHeight = 55; // １明細の高さ

明細データ

内部保持⽤変数

定数

{*******************************************************************************

 目的: 検索ボタン押下時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.btnSearchClick(Sender: TObject);
var
  iCnt: Integer;
begin

  // データ取得
  qryTemp.Close;
  qryTemp.SQL.Text :=
    ' SELECT * FROM TRTKSJ ';

  qryTemp.Open;
  try



図 5 データ取得用テーブルデータ取得用テーブル
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4-2.描画処理

4-1で配列に保持しているデータをループ処理にて順次描画

する。処理はrctGridのOnPainting処理にて記述する【ソー

ス３】。

    qryTemp.First;
    while not qryTemp.Eof do
    begin

// 配列へセット

SetLength(FListData, Length(FListData) + 1);
iCnt := Length(FListData) - 1;

FListData[iCnt].SHCD  := qryTemp.FieldByName('TSSHCD').AsString; // 商品コード

FListData[iCnt].SHNM  := qryTemp.FieldByName('TSSHNM').AsString; // 商品名

qryTemp.Next;
    end;
  finally

    qryTemp.Close;
  end;

  // 選択行をセット ※0始まり
  FSelectedRow := 0;

  // スクロールを先頭位置にする
  vsbGrid.ScrollBy(0, Length(FListData) * cRowHeight);

  // rctGridの大きさを設定

  rctGrid.Height := Length(FListData) * cRowHeight;

  // 再描画

  rctGrid.Repaint;
end;



ソース 3
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描画処理（行の枠、テキスト描画）
{*******************************************************************************

 目的: 描画処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridPainting(Sender: TObject; Canvas: TCanvas;
  const ARect: TRectF);
var

  brsTemp: TBrush;
  rRowArea, rText: TRectF;
  iData, iStartRow, iEndRow: Integer;
  bBtnColor: TBrush;
begin

  // 現在のスクロール位置より表示開始行を計算

  iStartRow := Trunc(vsbGrid.ViewportPosition.Y / cRowHeight);
  if iStartRow < 0 then

iStartRow := 0;

  // 現在のスクロール位置より表示最終行を計算

  iEndRow := Trunc(vsbGrid.ViewportPosition.Y / cRowHeight)
+ Trunc(vsbGrid.Height / cRowHeight);

  for iData := iStartRow to iEndRow do

  begin

    if Length(FListData) - 1 < iData then
Exit;

    // 行の枠を描画 Str ----------------------------------------------

    rRowArea := ARect;
    rRowArea.Left   := 1;
    rRowArea.Right  := rctGrid.Width;
    rRowArea.Top    := iData * cRowHeight + 1;
    rRowArea.Bottom := (iData + 1) * cRowHeight;

    brsTemp := TBrush.Create(TBrushKind.Solid, TAlphaColorRec.White);

    if FSelectedRow = iData then
brsTemp.Color := TAlphaColor($FFFFDC20) // 選択行

    else if ((iData mod 2) = 0) then

brsTemp.Color := TAlphaColor($FFEAF2FC) // 偶数行
    else    

brsTemp.Color := TAlphaColorRec.White;  // 奇数行

    Canvas.FillRect(
rRowArea,
0, 0,
[],
1,

brsTemp);

     // 描画対象範囲
// XRadius、YRadius：角の曲がり具合  0…四角

// Radiusを適用する角
// Opacity：透明度

     // 色

    // 行の枠を描画 End ----------------------------------------------

    // テキスト描画 Str ----------------------------------------------
    Canvas.Fill.Color := TAlphaColorRec.Black;

    Canvas.Font.Size := 19;

    // 商品コード

    rText := rRowArea;
    rText.Top := rText.Top + 3;

    rText.Left  := rctSHCD.Position.X;
    rText.Right := rctSHCD.Position.X + rctSHCD.Size.Width;
    Canvas.FillText(

rText, // 描画対象範囲
FListData[iData].SHCD,  // 値

True,
1,
[],
TTextAlign.Leading,     
TTextAlign.Center);     

// WordWrap：True - 改行あり

// Opacity：透明度
// テキストを読む方向 ※ヘルプにて値なしを推奨

// 水平方向の配置  Leading：左揃え
// 垂直方向の配置  Center ：中央

①

②

③
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4-3.明細タップ処理

本章のタップ処理では、タップ時に選択行の色の変更を行

う。色の指定については4-2の処理で実装済みであるため

rctGridのOnMouseDownイベントにてFSelectedRowの

変数値を変更し、再描画を行うだけで実装可能である

【ソース４】。

処理の流れとしては以下の通りである。

①現在表示しているスクロール位置より

画面に表示する開始行と終了行を計算する

②各明細データ単位に行の区切り枠を描画する

③明細の値を描画する

本稿で実装している描画処理では、まずTRectF型の変数を

定義し、Left、Right、Top、Bottomの値を指定して、描画の

対象範囲を定める。その後、各々の描画処理を実装している。

行の区切り枠では、rRowArea変数に描画範囲をセットした

後、選択行、偶数行、奇数行による色の指定を行い、

Canvas.FillRect処理で描画を実施している。

明細の値では、rText変数に明細タイトルの位置と幅に合わ

せて描画範囲をセットした後、FillText処理で値を表示して

いる。列の幅を大きくしたいときや位置を変更したい場合は、

明細タイトルの幅や位置を変更するだけで、明細の描画も付

随して変更されるという仕組みである。

明細タップ処理（選択行の変更）

    // テキスト描画 End ----------------------------------------------

  end;
end;

商品名も商品コードと同⼿順で描画

{*******************************************************************************

 目的: 明細タップ時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridMouseDown(Sender: TObject; Button: TMouseButton;
  Shift: TShiftState; X, Y: Single);
begin

  // タップ位置(Y座標)から選択行を計算

  FSelectedRow := Trunc(Y) div cRowHeight;

  // 再描画
  rctGrid.Repaint;
end;
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4-4.スクロールバーの自動表示切替え

スクロールバーは明細をスライドしたタイミングだけ表示

させるように実装する。ロジックとしては画面生成時処理

に１行追加するだけで実装可能である【ソース５】。
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5.チェックボックスの実装

5-1.描画処理

本稿でのチェックボックスは、チェックONの場合は黒丸で

塗りつぶし、チェックマークが表示される見た目で作成す

る。rctGridのOnPaintingに処理を追加する【ソース６】。

スクロールの自動表示設定

描画処理（チェックボックス）

{*******************************************************************************

 目的: 画面生成時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.FormCreate(Sender: TObject);
begin
  // スクロールの自動表示

  vsbGrid.AniCalculations.AutoShowing := True;
end;

{*******************************************************************************

 目的: 描画処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridPainting(Sender: TObject; Canvas: TCanvas;
  const ARect: TRectF);
var

  brsTemp: TBrush;
  rRowArea, rText: TRectF;
  rCheck: TRectF;
  iData, iStartRow, iEndRow: Integer;
  pDrawPoint1, pDrawPoint2: TPointF;
begin

  for iData := iStartRow to iEndRow do

  begin

    if Length(FListData) - 1 < iData then
Exit;

⾏の枠、テキスト描画【ソース3】

表⽰開始⾏、終了⾏計算【ソース3】
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    // チェックボックス描画 Str --------------------------------------
    // チェックの外側描画

    rCheck := rRowArea;
    rCheck.Left   := rctCHEK.Position.X + rctCHEK.Width / 4; // Left  ：開始位置

// Right ：幅

// Top   ：開始位置
// Bottom：高さ

    rCheck.Right  := rCheck.Left + 32;
    rCheck.Top    := rRowArea.Top + 11;
    rCheck.Bottom := rRowArea.Bottom - 11;

    // 描画する線の設定値

    Canvas.Stroke.Kind  := TBrushKind.Solid;
    Canvas.Stroke.Color := TAlphaColorRec.Black;
    Canvas.Stroke.Thickness  := 0.5;
    Canvas.DrawRect(

rCheck,

16, 16,
AllCorners,
1,
TCornerType.Round);

// 描画対象範囲

// Radius：横半径、縦半径

// Radiusを適用する角
// Opacity：透明度

   // 角の種類

    // チェックONの場合

    if FListData[iData].CHEK then
    begin

// チェックの中身描画
Canvas.Fill.Color := TAlphaColorRec.Black;

Canvas.FillArc(
PointF(
rCheck.Left + 16,                       // 円の中心位置：X

Trunc(cRowHeight / 2) + rRowArea.Top),  // 円の中心位置：Y
PointF(16, 16),

0, 360,
1);

// Radius：横半径、縦半径

// 塗りつぶし角度

// Opacity：透明度

// 始点のX

// 始点のY

// 終点のX
// 終点のY

// チェック線左
pDrawPoint1.X := rCheck.Left + 6;

pDrawPoint1.Y := rCheck.Top  + 9;
pDrawPoint2.X := pDrawPoint1.X + 7;
pDrawPoint2.Y := pDrawPoint1.Y + 16;
Canvas.Stroke.Thickness  := 3.5; // 線の太さ
Canvas.Stroke.Color := TAlphaColorRec.White;  // 線の色

Canvas.DrawLine(pDrawPoint1, pDrawPoint2, 1);

// チェック線右

// 始点のX
// 始点のY

// 終点のX

// 終点のY

pDrawPoint1.X := pDrawPoint2.X;
pDrawPoint1.Y := pDrawPoint2.Y;

pDrawPoint2.X := rCheck.Left + 32;
pDrawPoint2.Y := rCheck.Top + 2;
Canvas.Stroke.Thickness  := 3.5; // 線の太さ

Canvas.Stroke.Color := TAlphaColorRec.White;  // 線の色
Canvas.DrawLine(pDrawPoint1, pDrawPoint2, 1);

// 値を元に戻す
Canvas.Stroke.Color := TAlphaColorRec.Black;
Canvas.Stroke.Thickness  := 1;

    end;

    // チェックボックス描画 End --------------------------------------

  end;
end;

①

②

③
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処理の流れとしては以下の通りである。

①外側の円を描画する

②チェックONの場合に、黒丸で塗りつぶしを行う

③チェックONの場合に、チェックマークを描画する

①の処理では、前章での描画処理と同様に、まずは描画対

象範囲を指定する。その後DrawRect処理により描画処理

を実施する。円の描画は、XRadius、YRadiusの引数値で

どれくらいの大きさの円を描くかを決定する。XRadius、

YRadiusの値が円の縦と横の半径にあたるため、設定し

た値に対して、Rectの値についても調整する必要がある。

例えば、本サンプルの場合は各Radiusを16と設定してい

るため、RectのLeft-Right間、Top-Bottom間は32とな

らなければ、いびつな円として描画される。

②、③の処理はチェックONとした場合に実施する。②

の黒丸での塗りつぶしはFillArc処理によって行う。こちら

はDrawRect処理とは異なり、Rectの指定は不要である

が描画したい円の中心を起点に、塗りつぶし範囲を指定す

る必要がある。本サンプルでは、外側の円と同一の大きさ

で塗りつぶしを行っている。③のチェックマークの描画は、

2本の線を組み合わせて実装している。それぞれ線の始点

と終点、線の太さと色を設定した後、DrawLine処理によ

り、線を描画している。
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5-2.明細タップ処理

明細タップ時に、チェックボックスのONとOFFを切り替え

る処理を実装する。

タップしたポイントのX座標が”確認”列の範囲内であれ

ば、配列の値を切り替える処理を追加するだけで実装完了

である【ソース７】。

明細タップ処理（チェックボックス処理）

{*******************************************************************************

 目的: 明細タップ時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridMouseDown(Sender: TObject; Button: TMouseButton;
  Shift: TShiftState; X, Y: Single);
begin

  // タップ位置(Y座標)から選択行を計算

  FSelectedRow := Trunc(Y) div cRowHeight;

  // チェックボックスタップ処理 Str --------------------------------------
  if (Trunc(X) >= rctCHEK.Position.X)                   and

     (Trunc(X) <= (rctCHEK.Position.X + rctCHEK.Width)) then

  begin
    FListData[FSelectedRow].CHEK := not (FListData[FSelectedRow].CHEK);
  end;
  // チェックボックスタップ処理 End --------------------------------------

  // 再描画
  rctGrid.Repaint;
end;

処理追加
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6.ボタンの実装

6-1.描画処理

“カメラ”列のボタンの描画を行う。ボタン内のテキストには

“撮影”の文言を設定する。rctGridのOnPaintingに処理を

追加する【ソース8】。

描画処理（ボタン）

{*******************************************************************************

 目的: 描画処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridPainting(Sender: TObject; Canvas: TCanvas;
  const ARect: TRectF);
var

  brsTemp: TBrush;
  rRowArea, rText: TRectF;
  rCheck: TRectF;
  rBtn: TRectF;
  iData, iStartRow, iEndRow: Integer;

  pDrawPoint1, pDrawPoint2: TPointF;
  bBtnColor: TBrush;
begin

  for iData := iStartRow to iEndRow do

  begin
    if Length(FListData) - 1 < iData then

Exit;

    // ボタン描画 Str ------------------------------------------------

    rBtn := rRowArea;
    rBtn.Left   := rctCamera.Position.X;
    rBtn.Right  := rctCamera.Position.X + rctCamera.Size.Width;
    rBtn.Top    := rBtn.Top + 6;
    rBtn.Bottom := rBtn.Bottom - 6;

    // ボタン色
    bBtnColor := TBrush.Create(TBrushKind.Solid, TAlphaColor($FFE0E0E0));

    // ボタン描画

    Canvas.FillRect(
rBtn,
5, 5,
AllCorners,
1,

bBtnColor);

// 描画対象範囲
// XRadius、YRadius：角の曲がり具合  0…四角

// Radiusを適用する角
// Opacity：透明度

// 色

    // ボタン枠描画

    Canvas.Stroke.Kind  := TBrushKind.Solid;
    Canvas.Stroke.Color := TAlphaColorRec.Gray;

    Canvas.DrawRect(
rBtn,
5, 5,
AllCorners,
1,

// 描画対象範囲
// XRadius、YRadius：角の曲がり具合  0…四角

// Radiusを適用する角
// Opacity：透明度

TCornerType.Round); // 種類

表⽰開始⾏、終了⾏計算【ソース3】

⾏の枠、テキスト描画【ソース3】

チェックボックス描画【ソース6】

①

②



ソース 9

処理の流れとしては以下の通りである。

①指定範囲でボタンの形で塗りつぶしを行う

②ボタンの枠を描画する

③ボタンに表示する文言を描画する

①の処理では、前章での描画処理と同様に、まずは描画対

象範囲を指定する。その後、FillRect処理にてボタンの形

に描画する。本サンプルでは、少し丸みを帯びた形で描画

するため、XRadiusとYRadiusの値を5で指定している。例

MIGARO Technical Report   057

えば、各Radiusの値を0で指定した場合は四角の形のボ

タンとなる。

②の処理では、FillRect処理で①で作成したボタンの枠を

描画している。

③の処理では、FillText処理で描画したボタン上に文字を

セットしている。文字の描画については、第４章と同様の手

順である。

6-2.明細タップ処理

明細タップ時に、”撮影”ボタン押下時の処理を実装する。

タップしたポイントのX座標が”カメラ”列の範囲内であれ

ば、カメラ起動を行う【ソース９】。本サンプルでは、カメラ

起動の処理を実装しているが、TButtonのOnClickイベン

トをイメージいただき、各々の処理を実装すればよい。
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明細タップ処理（ボタン処理）

    // 文字描画

    Canvas.Fill.Color := TAlphaColorRec.Black;
    Canvas.FillText(rBtn, '撮 影', True, 1, [], TTextAlign.Center, TTextAlign.Center);

    // ボタン描画 End ------------------------------------------------

  end;
end;

③

{*******************************************************************************

 目的: 明細タップ時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridMouseDown(Sender: TObject; Button: TMouseButton;
  Shift: TShiftState; X, Y: Single);
begin

  // タップ位置(Y座標)から選択行を計算

  FSelectedRow := Trunc(Y) div cRowHeight;

  // カメラボタンタップ処理 Str ------------------------------------------

  if (Trunc(X) >= rctCamera.Position.X)                     and
     (Trunc(X) <= (rctCamera.Position.X + rctCamera.Width)) then

  begin
    // *** カメラ起動 *** //

    ShellExecute(0, 'OPEN', PChar('microsoft.windows.camera:'), nil, nil, SW_SHOWMAXIMIZED);
  end;
  // カメラボタンタップ処理 End ------------------------------------------

  // 再描画

  rctGrid.Repaint;
end;

チェックボックスタップ処理【ソース7】
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7.リストボックスの実装

7-1.描画処理

“状態”列のリストボックスの描画を行う。リストボックスは

ボタンの描画実施後に下向きの三角マークを描画して表示

している【ソース１０】。

描画処理（リストボックス）
{*******************************************************************************

 目的: 描画処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridPainting(Sender: TObject; Canvas: TCanvas;
  const ARect: TRectF);
var

  brsTemp: TBrush;
  rRowArea, rText: TRectF;
  rCheck: TRectF;
  rBtn: TRectF;
  iData, iStartRow, iEndRow: Integer;

  pDrawPoint1, pDrawPoint2: TPointF;
  bBtnColor: TBrush;
  TempPoints: TPolygon;
begin

  for iData := iStartRow to iEndRow do
  begin

    if Length(FListData) - 1 < iData then

   // リストボックス描画 Str ----------------------------------------
    rBtn := rRowArea;
    rBtn.Left   := rctJYTI.Position.X;
    rBtn.Right  := rctJYTI.Position.X + rctJYTI.Size.Width;

    rBtn.Top    := rBtn.Top + 6;
    rBtn.Bottom := rBtn.Bottom - 6;

    // ボタン色
    bBtnColor := TBrush.Create(TBrushKind.Solid, TAlphaColor($FFE0E0E0));

    // ボタン描画
    Canvas.FillRect(

rBtn,
5, 5,

AllCorners,
1,
bBtnColor);

// 描画対象範囲
// XRadius、YRadius：角の曲がり具合  0…四角

// Radiusを適用する角

// Opacity：透明度
// 色

    // ボタン枠描画

    Canvas.Stroke.Kind  := TBrushKind.Solid;
    Canvas.Stroke.Color := TAlphaColorRec.Gray;
    Canvas.DrawRect(

rBtn,
5, 5,

AllCorners,
1,

// 描画対象範囲
// XRadius、YRadius：角の曲がり具合  0…四角

// Radiusを適用する角

// Opacity：透明度
TCornerType.Round); // 種類

Exit;⾏の枠、テキスト描画【ソース3】

チェックボックス描画【ソース6】

ボタン描画【ソース8】

表⽰開始⾏、終了⾏計算【ソース3】

①



図 6 コンポーネント配置（リスト）コンポーネント配置（リスト）
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処理の流れとしては以下の通りである。

①第６章と同様の手順でボタンを描画する

②下三角(▼)を描画する

③リストボックスに表示する文言を描画する

①と③の処理については、第６章と同様のイメージでボタン

と文言の描画処理を行う。

②の処理では、下三角を描画するためにFillPolygon処理を

実施する。TempPoints変数では三角形を形成するために各

支点を設定している。

下三角は記号文字でも表現可能であるが、実行端末の使用

フォントに依存する可能性がある。しかし、②の処理のように

図形で描画処理を行うと実行端末による影響は受けない。

7-2.コンポーネントの配置

本サンプルでは、明細タップ時に選択リストを表示する。リ

ストの内容表示は別途コンポーネントを配置して実装する

【図６】
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    // 下三角配置設定

    SetLength(TempPoints, 4);
    TempPoints[0] := PointF(rctJYTI.Position.X + rctJYTI.Size.Width - 22, rBtn.Top    + 14); // 左支点
    TempPoints[1] := PointF(rctJYTI.Position.X + rctJYTI.Size.Width -  4, rBtn.Top    + 14); // 右支点

    TempPoints[2] := PointF(rctJYTI.Position.X + rctJYTI.Size.Width - 13, rBtn.Bottom - 12); // 下支点
    TempPoints[3] := PointF(rctJYTI.Position.X + rctJYTI.Size.Width - 22, rBtn.Top    + 14); // 左支点

    // 下三角描画
    Canvas.Fill.Color := TAlphaColorRec.Black;
    Canvas.FillPolygon(TempPoints, 1); // [0]→[1]→[2]→[3]で支点を結んで▼描画

    // 文字描画

    Canvas.Fill.Color := TAlphaColorRec.Black;
    Canvas.FillText(rBtn, FListData[iData].JYTI, True, 1, [], TTextAlign.Leading, TTextAlign.Center);
    // リストボックス描画 End ----------------------------------------
  end;

end;

②

③



図 7 データ取得用テーブル（リスト取得）データ取得用テーブル（リスト取得）
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7-3.リスト内容の取得

画面生成時に【図７】のテーブルよりデータを取得する。取得

した内容をlvListのItemsに取得内容を追加する【ソース

11】。

リストデータ取得処理

{*******************************************************************************

 目的: 画面生成時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.FormCreate(Sender: TObject);
begin
  // スクロールの自動表示

  vsbGrid.AniCalculations.AutoShowing := True;

  // リスト内容取得

  lvList.Items.Clear;
  lvList.Items.Add.Text := '';

  qryTemp.Close;
  qryTemp.SQL.Text :=
    ' SELECT * FROM MSSHTJ ';
  qryTemp.Open;
  try

    while not qryTemp.Eof do

    begin
lvList.Items.Add.Text :=
qryTemp.FieldByName('STJTNM').AsString;

qryTemp.Next;

    end;
  finally
    qryTemp.Close;
  end;

  // ポップアップ非表示

  poListView.Visible := False;
end;

処理追加
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7-4.リスト表示処理

btnListViewのOnClickイベントにてリスト内容の表示

処理を記述する【ソース１２】。poListViewの表示場所の

ターゲットをbtnListViewとし、ポップアップ表示させる。

また、表示させる向きをbtnListViewの表示位置で決定

する処理を記述している。
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リスト内容表示処理

{*******************************************************************************

 目的: リスト表示処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.btnListViewClick(Sender: TObject);
var
  sY: Single;
begin

  poListView.PlacementTarget := btnListView;
  poListView.Popup;

  // ボタンのY座標を保持

  sY := btnListView.Position.Y;

  // CalloutPositionの設定

  if TCustomPopupForm(TMyPopupForm(poListView).PopupForm).Top < sY then
  begin

    // ポップアップを上向きに表示

    rctListView.CalloutPosition := TCalloutPosition.Bottom;
    lvList.Margins.Top    := 5;
    lvList.Margins.Bottom := 15;
  end

  else 
  begin
    // ポップアップを下向きに表示

    rctListView.CalloutPosition := TCalloutPosition.Top;
    lvList.Margins.Top    := 15;

    lvList.Margins.Bottom := 5;
  end;
end;



ソース 13

062   MIGARO Technical Report

7-5.明細タップ処理

明細タップ時に、“状態”列のリストボックス押下時の処理を

実装する。タップしたポイントのX座標が“状態”列の範囲内

であれば、リスト表示を行う【ソース１３】。

7-4でリスト表示処理を実装したbtnListViewをタップした

ポイントへ移動させ、btnListViewClickイベントを動作さ

せている。しかしbtnListViewボタンはVisible:=Falseで設

定しており、画面上は表示されない。そのため、ポップアップ

のみがリストボックス上で表示されているように見える仕組

みである。

明細タップ処理(リストボックス)
{*******************************************************************************

 目的: 明細タップ時処理
 引数:

 戻値:

*******************************************************************************}
procedure TfrmRefer.rctGridMouseDown(Sender: TObject; Button: TMouseButton;
  Shift: TShiftState; X, Y: Single);
begin

  // タップ位置(Y座標)から選択行を計算

  FSelectedRow := Trunc(Y) div cRowHeight;

  // 状態リストボックスタップ処理 Str ------------------------------------

  if (Trunc(X) >= rctJYTI.Position.X)                   and
     (Trunc(X) <= (rctJYTI.Position.X + rctJYTI.Width)) then

  begin

    btnListView.Position.X := rctJYTI.Position.X + Trunc(rctJYTI.Width / 3);
    btnListView.Position.Y := Y - vsbGrid.ViewportPosition.Y - Trunc(cRowHeight / 2);
    btnListViewClick(nil);
  end;

  // 状態リストボックスタップ処理 End ------------------------------------

  // 再描画

  rctGrid.Repaint;
end;

チェックボックスタップ処理【ソース7】

ボタンタップ処理【ソース9】
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8.おわりに

本稿ではトピックとなる処理を１つずつ分けてご紹介した

ため、難易度が高く感じられたかもしれない。しかし、実際

の総ステップ数としてはわずか500ステップ程度で作成し

ている。さらにフレーム化や共通関数化などを行うと、複数

画面作成したい場合も容易に対応可能である。

また、本稿を活用すると、データ取得ロジックは共通化し、

画面の見た目のみをPCとタブレットで切り替えるといっ

たことも可能である。例えば、データ上でログイン情報と使

用端末を紐づけておけば、ログインによって自動で画面を

切り替えるといったことも実現できる。ぜひ、本稿が画面

設計における課題解決への一助となれば幸いである。
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